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ABSTRACT

" In this network synthesis problem a matrix giving flow
requirements between each pair of points is specified, and
the cost of flow in each arc is a concave function of the
amount of flow. A flow pattern which fulfills the require-
ments at minimum cost is sought. This problem is formulated
as a concave programming problem with linear constraints.

All the practical difficulties of formulation and theoretical
difficulties of identifying the globally minimal solution
while avoiding locally minimal solutions are discussed.

Three procedures are developed. The first procedure is
inefficient. The second procedure is quite eff{icient but
produces locally minimal solutions. Therefore different
heuristics and sequential sampling plans are suggested to
obtain the globally minimal solution (or estimate it) from a
number of locally minimal solutions. The third procedure is
a global search procedure of branch and bound type where each
subproblem is easy to solve. This procedure has limitations
because computer core size requirement grows very rapidly
with the size of the network. Different ways of
circumventing this limitation are discussed. Finally, a
post optimization procedure that approximates the solution
of nonconcave problems with cost specified by step functions
defined only at integral points is discussed. In conclusion,
a more general problem and future rescarch directions are
mentioned.




CHAPTER 1

1.1 Introduction

This thesis studies the techniques of planning a communication
network. It is a synthesis problem; the required number of channels
connecting each source-sink pair is specified and the layout of the
channels of communication must be determined. The problem is sometimes
known as the "TELPAK" problem which refers to packing more channels
together to take advantage of economies of scale.

This synthesis problem arises most often in two situations. The first
is in planning an intercity network such that the cost incurred is
minimum given an estimate of the traffic between cities. 7The traffic
volume data are used in C.C.S.1 calculations to determine the number of
channels required between cities for a certain prespecificd probability of
blocking and certain assumptions about the alternate routing procedure.

The second is in determining the most economical way of leasing, from a
telephone company, trunk groups between the offices of a corporation given
an estimate of the traffic volume between the offices and taking advantage
of high volume discounts.

In both the above cases, the planning problem would be fairly simple,
as we explain later in this chapter, if the cost per chawnel were constant
or increasing with the number of channels. But in this case, we face a
situation where improved tcchnology can be uscd when the number of channcels
increases. Cost per channel decreases with increasing capacity. This
trend is evident in the past developments (open wire, N2 carrier, microwave
radio, analog transmission over coaxial cable) and is expected to continue

in the foreseeable future (waveguides).

1C.C.S. mecans hundred call second which is a unit used in measuring traffic

in a telephonc network.
s~
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When the cost per channel is a decreasing function, we have a

"concave type" (explained in the note on Page 8) function as the total
cost objective function which has :o be minimized. A small example of
such a problem should be useful. Assume that a single telephone line
costs one dollar per mile, but if we build one hundred lines Lctween two
points, the cost is 75 dollars per mile. If we build two hundred lincs
between two cities, it costs, say, 120 dollars per mile. Because the
cost is céncave type, it is cheaper to pack the Jines into major routes
than to build all telephone lines directly. To illustrate the problem,
suppose that we have six locations A, B ,C , D, E, and F as shown
in Figure 2. The numbers in Figure 2 are the mileages between tiie points.
Let there be 50 telephone lines required betwcen points A and C , and
also between points B and D . No lines are required between any other
pair of points. The total cost of building a direct line between A and

C and also between B and D is
2 x (20 x 1 x 50) = 2,000 dollars.

If we do not build direct lincs between B and D but build the
50 lines by way of A and C , then the total number of lines to be
built between A and C is 100, and the cheaper rate is available. Thus,

the total cost is
2 x 4 x1 x50+ 100 x .75 x 20 = 1,900 dollars.

If we do not build direct lines between either A and C or
between B and D but build 50 lines between A and E , B and E ,

C and F , D and F , and also 100 lincs between E and F , then the

total cost is
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4 x 2,8 x 1 x50+ 100 x ,75 x 16 = 1,760 dollars.

So, the natural question is: what is the cheapest network that
satisfies all the requirements. In the above example, the third type is
the cheapest so far obtained and to get that we had to enumerate the

cost of the direct routing and the cost of using other possible inter-

mediate nodes. This enumeration becomes difficult as the number of
sources and sinks increases or as the total number of nodes increases,
and becomes almost impossible when the network configuration gets more
and more complex. An attempt is made in this thesis to develop a

systematic procedure for solving moderate-sized problems of this type.

1.2 Difficulties Faced in Solving the Problem

The difficulties encountered in this problem can be roughly divided
into two categorics. The first type of difficulty arises in building
(from a real world communication network situation) a network model which
can be analyzed. This will be illustrated with the network description
that follows but not discussed further in this thesis. The second type
of difficulty arises in the analysis of this problem. Because of a
certain mathematical subtlety involved in this problem, a thcorctically

elegant solution procedure appcars difficult to find, if one exists at

all. This mathematical difficulty will be described at the end of this
section to justify the use of a heuristic solution method in Chapter 3

and an elaborate enumerative solution method in Chapter 4.

1.2.1 Network Description and Practical Difficulties

Telephone calls are gencratod by the Individual subscriber.  The
subscriber's demands on the network can occur whenever he chooses, can be

of any duration, and can be directed to any other subscriber, Calls may
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he rcuted on cne eor more of <hiree overlapping networks. The network
cornecting cach subscriber to a central switching of““ce is called the
local network. The network connecting central offices within an area of
onc or more states is called the statewide network. The network which
connects the main cities is called the long-haul network. These three
classes of networks cover the country. The synthesis methods developed
in this thesis are applicable mainly to the long-haul network and state-
wide networks. In the case of statewide networks, the main stations are
the nodal points of the system. In the case of the long-haul neiwork,
cities are the nodal points of the system.

To calculate the rumber of channels required between nodal points, a
projection is first made about traffic demand between two points. It is
very difficult to project these traffic demands ahead of time. Demand
can be affected by a change in rate structurecs, new service offerings, or
conditions imposed by regulatory agencies. Moreover, new and unexpected
technologies may significantly change the demand, as, for example, a
communication satellite which could stimulate long distance calling and
on-the-spot T.V. coverage, or an improved time sharing computer system
which could increase data transmission throupgh cormmunicatjon cables. How-
ever, despite all these uncertainties, projections are made for traffic
requirements and these uncertainties are taken into account. Once traffic
projections are made, the C.C.S. calculaticons arc used to find the number
of channels required for a certain probahility of blccking. Usually, the
blocking probability is .01 and standard traffic engincering practices arc
available for such calculations.

At this point, two complexities which enter into trunk requitvenent
calculations must be taken Into account. The first is the alterunate

routing plan. The alternate route is thc pat't offered to a call if the




most direct path is blocked. Alternate routes are always specified. If

an alternate route from point A to point B goes through point C ,
then this fact must be taken into account in determining trunk require-
ments between points A and C , and between points B and C . The
second complexity is what is known as diversity routing.2 The trunks
between two points are split into two or more physically different path=
for better transmission reliability. Thac is, two points should not be
completely disconnected if a part of the network is destroyed by a natural
catastrophe or for any other reason. This is similar to alternate routing
requirements. The above discussions show how difficult it is for a planner
to say exactly how nany channels are needed between each pair of points.

However, for our synthesis problem, we shall assume that this figure has

been determined.

Cost Estimation

There is, however, another set cf difficulties, even given the
knowledge of these channel requirements. Each traffic gererating and
terminating point, and all traffic handling points, are defined as nodes,
and the links or connecting arcs between two nodes are transmission
facilities. The graph is undirected because telephone conversations go
both ways. Several facilities may comprise a link. This type of mapping
by means of nodes and arcs is not always simple--a lot of judgemental
factors are involved in deciding these nodes and arcs. For instance, at
certain nodes some transmission lines pass directly through and some go

via a switching machine. In this situation, the cost is different for the

2 ' .
Sce "The Design of Minimum Cost Survival Networks," K. Steiglitz,

P. Weiner, D. J. Kleitman, Technical Memorandum TM-105, National Rescurce
Analysis Center, System Evaluation Division. This paper gives a
heuristic treatment.




Tweoenue, v Lo the exira crst of switching. At cother nedes, all calls
mer Teoew tened, Tnoenv cese, however, the switching cost can be taken

"~ oacecount by viing 2 technicue called node splitting which means that
o~ raffic handl’npg point is split into two nodes and the cost of the
arc betweena ber s ‘he switching cost. So, with imazination some of the
d'fTicu ties can be taken care of. But a large nurber of practical
difficulties cannot be tackled. Experieuce and common sense must be used
i~ suci situations.

Last, but not the least, of the first category of difficulties is
determining the cost functions which relate cost to the number of channels.
Cost is the main objective in our design considerations., But cost to
whom, company or subscriber? And how much is the cost incurred? These
are natural questions which arise when we are talking about cost. 1In the
TELPAK problem where interoffice facilities for a large corporation are
considered, the cost referred to is cost to the customer, and it could be
different from the actual cost incurred by the tclephone company. But in
other cases cost refers to the cost incurred by the telephone company. 1n
both situations, an element of uncertainty is involved in these costs. It
is affected by the interest rate, available funds and the production cost
of facilities and designs,

The possible kinds of cost functions encountered in practice in this
problem are illustrated in Figures 1.3, 1.4, 1.5, 1.6, and they all have
onc thing in common--economy of scale. All the cost functions «re what we

will call "concave type"3 and they are nondecreasing functiomsof flow value.

3 . .

That is, they are not necessarily concave bhecause concave functions are
contjnnous everywhere except at the end points and the following functions
miay not have that continuity property. Also, concave {uncticns satisfy
A.f(xl) + (1 - A)-f(xz) < f(Xxl + (1 - X)xz) » 0 <A <1, which only the

third and fourth of our functions satisfies (assuming A  be such that
(Ax‘ + (1 - X)x,) is a point at which 1 i defined).

il S i
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The step function with decreasing step size-—this type of cost

structure may be encountered Lecause of the uses of different types of

facilities for different ranges of the number of channels.

A more

sophisticated carricr can be used when the number of channels is large,

resulting in a lcsser cost pur charnel and hence smaller step sizes.

change of type of carrier can only occur at certain volumes of channel

requirements resulting in juaps occurring in the cont curve.
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steps of decreasing size occur due to the same reason as above. Here a
variable cost is incurred in transitional capacity levels of different
facilities, i.e., a facility can be overloaded at some additional cost per
channel.

Total Cost in § —»

Number of Channels -

FIGURE 1.5

Piecewise linear concave function--~here each part is linear but the
slopc decreases with increasing flow value. Here a variable cost is
incurred for each additional channel but this variable cost depends on the

range it is in.

+ ............oco.oo
.®
wr o o'..
®
A ot
.
.
.
@ Ky
L]
8l -
°
—t ..
<] .o.
ES ]
Ole
[l L)
>
p

Number of Channels - »

FIGURE 1.6

The final type has decrcasing forward differcences, i.e., if f(n) is
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the total cost of n channels then f(n+ 1) -~ f(n) >~ f{n+2) - f(n+ 1) >
.o > 0 . Here total cost increases with the addition of cach channcl,

but cost per channel decreascs. This is strictly a concave function of
discrete type. 1In cases where only approximate cost data is available and
some guess work is involved in getting the cost values, such functionsg are

used.
i

This concludes our discussion of the practical difficulties which !
arise in the problem formulation stage, We assume that these difficulties
can be surmounted and that the cost function, like the channel require-

ments, is available to the network synthesizer.

Discrete vs. Continuous Valucs

The cost data discussed above is discrete, i.e., values are only
available for integral points. Yor the purpose of wmethods usced in
Chapters 3 and 4, we will employ a continuous concave represeniation of
the data, obtained by using a continuous curve through the discrete
points. However, such concave curves cannot be drawn through the discrete
points for Figures 1.3 and 1.4. Hence, scme approximation is necessary,
Use of such a continuous concave version is justified (except Figurdés 1.3
and 1.4) because the answer we get is alwoays integral (as shown in
Appendix C), and the values of the data at thosc points match the
origirmal data. For Figures 1.3 and 1.4, some post optimization procedurce
is needed. Except in Chapter D, we will always be concerned with
cont inuous variables and concave functions,  Aonother alteornative way of
Joining the discrete points i by piceevice Tinear carvess The alporiths
described in Chaptev 3 is applicable to such curves with only mingm

modifications, as mentioned in that chapter.
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1.2.2 Theoretical Difficulties

We are now in a position to discuss the second type of difficulties,
those which arise in the analysis of the problem. Here we will consider a
network with N nodes and M arcs (M can be different from E£E7§_ll
because some z::s between nodes are not possible) joining the nodes
through which calls are channeled. The requirement matrix R = {rij} is
specified where rij = number of channels required between node i and
j . Also the function fm(ym) is given for all M arcs. This function
gives the cost of Y channels (amount of flow, in network terminology)
in arc m of the network. With all this information, we can set up the
above problem as a programming problem.

In the discussion that follows, the concept of cxtreme pointsof a set

is very important.

Definitions:

A convex combination of two points Xl and X2 in a vector space is

a point X given by X = {)‘X1 + (1 - A)XZ} where A is a scalar and
C<axa<1.

An extreme point X of a set is a point in the set such that there
exist no two distinct points Xl and Xz in the set and 1 > X > 0 such
that the point X 1is a convex combination of Xl and X2 .

Extreme flow is similarly defined as a feasible flow which cannot be
expressed as a convex combination of two other distinctly different
feasible flows.

In the arc-chain formulation that follows, two types of vector spaccs,

' and each of

X and Y , are used. The X-space is dcfined as "chain spar>'
its e¢lement {xtj} indicate the amount of flow in the kth chain between

source and sink pair 1 j . The Y-spacc is defined as "arc-space" and




each of its elements {ym} indicates the amount of flow in arc m .

Y~-space is a linear transform of X-space by means of arc-chain incidence

matrices A defined below.

ij

Arc-Chain Formulation

Pij = Number of different loopless chains between node i and 3j .
k . . .
pij = The set of loopless chains connecting node i and j , where
k=1,2, ... Pij
X,. = A vector of dimension P, where element {x%.} represents
i3 i] 1]
xij amount of flow between i and 3 through chain p?j .

A,. = Mx Pij arc-chain incidence matrix, whose (m,k) element is

1 if the chain p?j traverses arc m , or O if it does not.

Y = 2 A, X.. =M vector {y } which is the total flow ir the
- N & e & m
1,331>]

arc m .
So, here we have to minimize the cost Z , i.e.,

M
(1.1a) Minimize 2 = 21 £.0.)

i
subject to the constraints !

P, .
ij K
(1.1b) z x > r, for all source and sink pairs 1 j ,
1 — 1)
k=1
(J. 1) Yk > 0 for all k and all source and sink pairs 1 j

The lincar {ncjuaitities (1.1b) and (1.1c) define a polyhedron in

X-space. Since Y-space 1s o lincar transform of X-space, the above

_ - d
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polyhedron can be transformed into another polyhedron in Y-space. The

objective function 2Z

is the positive sum of concave functions of

elements Yo of the vector Y . So, it is a concave function in Y~

space.

z(Y) = z( ))

1,321>3

-Aijxij) definition 7 vy here Z(X) is the

objective function in X-space.

Z(X) 1is a concave function in X~-space as evident from the following
inequality. Consider any two points X1 » X, in X-space and a scalar

A such that 0 <X <1. Y and Yz are defined as the images of X1

2

1

2

and X2 in Y-space, i.e., Yl = E A X% and Y =

i(xxl + (1 - A)xz)

The following lemma is useful in determining extreme points of the

]

jv

i,jai>j

15%13 £ 51y 1713

1 2 e ey
Z(; Z Aij()\xij + (1 - A)Xij)) by above definition

»§31>]

because A is a scalar »nd A,,'s are matrices.

i3

1 2
Z(A i,j§i>j ARy + =0 ) Aijxij)

i,j3i>]
1 2 .
Z(\Y + (1 - A)Y") by definition

kZ(Yl) + (1 - A)Z(Yz) because Z(Y) is concave

in Y-space

1 2
vzl Y oA x ) +a-nzf Y A xf) by
(i,javj H i-") (i.jwj 1 ‘5)

definition

AZ(XY) + (1 - 2)-Z(x?) by definition

polyhedral set in X-spacec.

Lemma 1,1:

A point is an extreme point of the polyhedral set in X-space if and }

'

/

/
¢

(
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only if it corresponds to a solution with a single flow-chain between cach

source-sink pair.

Proof:

Suppose there are n source-sink pairs with rij > 0 . Then there

are n-equations of the formn (1.1b).

Any basic feasible solution of the convex polyhedron defined by
equations (1.1b) and (1.1¢c) can have at most n nonnegative variables
(because there are n-equations of the form (1.1b)). No varicble app-ars
in rore than one equation of the set (i.1b) and all the n-equations have
to be satisfied. So, any feasible solution must have at least n-positive
variables. Thus, every basic feasibie solution has exactly n-positive
variables, one for each source-sink pair. This c¢stablishes that any basic
feasible solution corresponds to a single flow-chain betueen cach source-
sink pair.

If there is a single chain between each source-sink pair, then only
one variable for each equation (1.1b) is positive and each of these
positive variables are different from the other. So, they form an
independent feasible set. Thus, they are a basic feasible solution.

So, a solution is a basic feasible solution if and only if it
corresponds to the solution with a cingle flow-chain between each source-
sink pair. A solution is an extreme point if and only if it is a basic
feasible solution (Page 100, Reference H-1). Hence, a point is an
extreme point of the polyhedral set if and only if it corresponds to a

solution with a single flow-chain between cach source-sink pair. ||

In this problem, a concave function has to be minimized over a
convex polyhedral set. The following lemma substantially reduces the

numbcr of pofints to be searched in any dircct enumervation procedure,
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Lemma 1,2:

The minimum of a concave function on the convex polyhedral set D ,

if it exists, is attained by at least one of the extreme points (vertices).

Proof:

Since the set is a polyhedral set, any point Y in the set can be
expressed as a convex combination of its extreme points Yl, cees Ym .

. m
Suppose the minimum is attained at Y where Y = 2 oY and
o o j=1 I i

m
z a, =1 ,a, >0 V i . Since Y 1is the minimum point,
et i ’ - o

i

f(Yo) < £(Y) for any YeD

m m
but f(Yo) = f(.zl aiYi) 3_121 aif(Yi) because f(Y) is a concave

function.

Let f(Y ) = Min f(Y,) . So,
s i i

m m
£QY)) 2 121 a £(Y) > 121 a, f(Y)) (since a, > 0)

m
= f(Ys) (%ince 121 @, = 1) .

Since Ys eD, f(Yo) = f(Ys) . Thus, the extreme point Ys must

also be a minimum point. |}

So, a direct method of finding the minimum of the concave fuaction in
a polyhedral set is to enumerate all the extreme points and evaluate the

function at all these extreme points to determine the minimum. But this

At o




is not a very practical method because the number of extreme points in the

polyhedra defined by (1.1b) and (l.lc) is very large and grows very
rapidly with an increase in the number of arcs and source-sink pairs.
From the Lemma 1.2, the minimum is attained at one of the extreme points
in Y-space. However, the extreme points in Y-space arc very difficult to
determine. And it is easy to determine an extreme point in X-space by
using a single chain for each source and sink pair (from Lemma 1.1).
Therefore, it is useful to determine the relationship between extreme
points in Y-space and extreme points in X-space, which is done in

Lemma 1.3.

The image of a point P of X-space in Y-space is the point in Y-
space which is obtained by transforming the coordinates of the point P
by using the matrices Aij .

The following small example reveals that more than one poaint in
X-space can have the same image in Y-space, and it also shows that the

image of an extreme point in X-spacc can be a nonextreme point in

Y-space.
FIGURE 1.7
Exampie:
= o Ny
The required flows are Ty 2 and Toe = 2, Let

. apr .
x1 - ( 1357 13457 _22456 2350) d

XL7 tx17 'x26 'xZ() Y = (yl3.}'230'36.Y35.Y,‘5-y56v)’57) . ‘,

o
3
-3
[USPRPSIPEIEN
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The vector Yl , where Y'r = (2,2,2,2,2,2,2) , is the image of both X

1 1

T
and X, , where X = (2,0,2,0) and X, = (0,2,0,2) . Both in X, and

1

Xz there is a single path between each source and sink pair, so they are

extreme points. However, Y is a convex combination of two feasible

1
points YIl = (2,2,4,0,4,2,2) and YIZ = (2,2,0,4,0,2,2) , since
1 1. . '
Yl 2 Y11 +-§ \12 « So, Y is not an extreme point.

1

Lemma 1.3:

For a point to be an extreme point of the polyhedron in the Y-space,
it is necessary, but not sufficient, that it be the image of an extreme

point of the polyhedron in X-space.

Proof:

Suppose the lemma is not true, and that there exists Y which is an
extreme point of the polyhedron in Y-space and it is an image of X €
polyhedron in X-space, which is not an extreme point (i.e., Y is the

image of nonextreme point in X-space). So, X = z aixi where
i

' i

z a, = 1,a, >0 V i, and at least two a,'s are nonzero, and X''s

i i
are extreme points of the polyhedron in X-space. Let the image of Xi in

Y-space by v . Since X to Y is linear translation, Y = z ain .
i

Now if all Yi's are not equal, then by definition Y 1is not an extreme
point, a contradiction. However, if they are all the same, then Y is
also image of X1 which is an extreme point in X-space. 8o, the necessary

part is valid. The above example shows that it is not sufficient.ll

The above discussion shows that if we seiarch all the extreme points
in X-space we cover all the cxtreme points fn Y-space. Since some extreme

poiuts in X-spacc may correspond to nonextrem: pofnts in Y-space, this
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scarch procedure may involve some unnecessary work, but the case of
generating extreme points in chain space justifies the emphasis on X-
space in the subsequent algorithms.

Another major difficulty arises in pursuing a solution to the above
problem due to the fact that the problem has quite a few local minimum

points which are not necessarily global minimum points.

Definition:

By a local minimum of Z(Y) on D (where Y ¢ Rn) , we shall mean
a vector Y € D for which there exists a positive scalar € and a
corresponding €-neighborhood N(Y,€) = {Y ¢ R" : ||Y - Y]] < €} , such
that 2(Y) < Z(Y) for all Y e D NN(Y,€e) . 1If the latter incquality
holds for all Y € D , then Y is called the global minimm of Z in D .

So, any gradient search method which looks for an improvement of the
objective function in an €-neighborhood might result in 2 local minimum
point (one such method is discussed in Chapter 3). The most difficult
aspect of this is the identificacion of the glebally minimum point when it
is obtajined. Considerable scarch in this direction convinces the author
that there is no general method available which identifics a global
optimal point for such optimization problems, though such jdentification

in some special cases may be possible, as will be discussed in Chapter 2.

Though there is only one commodity, telephone calls, the problem must
be treated as a multi-commodity problem becausc calls are distinguished by
their starting and ending points, and we assume that there are many
different pairs of starting and ending points specitied. So, the
difficulties of multi--commodity flow problems also arise here,

If (as in the synthesis problem we are studying) there is no
capacity restriction and if (as is not the casc¢ in our problem) the cost

is a linear function of the flow, then the solution can be easily obtained

—
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by Floyd's shortest path procedure. Here the linear cost ccefficients are
used as the lengths of the arcs and the entire flow between each source-
sink pair is passed through the shortest path between them. In most linear
cost problems, however, there is a capacity constraint. In such cases, a
very efficient algorithm cxists only for the case of 2 source-sink

pairs [H-3]. For more than two pairs, a certain large scale programming
method using a column generation technique¢ is useful. This linear cost
method can be extended successfully to conwvex cost functions because each
arc can be split into a number of arcs, which transforms the problem into
a linear cost problem with an enlarged number of arcs. For instance, the
convex cost on an arc in the Figure 1.8 can be approximated by 3 arcs
having linear cost coefficient a, , a, , a, , and capacity ¢, , ¢, , C, ,

1 2 3 1

respectively.

Total Cost in §

“«— -] Flow —»

——>l4——c

——>f-u

] 2

3

FIGURE 1.8
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Here the prover order of choice of arcs is guaranteed (i.e.,
arc (al,cl) (cost coefficient a) and capacity cl) is completely filled
before (az,cz) is used and when (32’c2) is filled (a3,c3) is used)
because the cost coefficient increases with flow value, However, for
concave cost, the cost coefficient decreases with the flow value so the
proper order will not be maintained. Hence, such simplification is not
possible and no procedure of finding the global optimal point, which does
not involve the risk of total enumeration, is available. The methods
proposed in succeeding chapters are local search, and branch and bound
(here, in the worst possible case, total enumeratinn may take place)

procedures,
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CHAPTER 2

The last chapter exposed the practical and theoretical difficulties
involved in sceking a solution procedure for the problem considered in
this thesis. Before discussing the specific solution procedures in
succeeding chapters, we will survey in this chapter the available results.
The relevant areas of research which must be covered are multi~commodity
flow problems and concave cost minimization problems. We will survey
the important results in these two fields, and we will discuss a simple
variation of this problem which is relatively casy to solve.

The pioneering work in multi-commodity flow problems was done by, among
others, L. R. Ford, D. R. Fulkerson, T. C. Hu, R. E. Gomory and
J. A, Tomlin1

Ford and Fulkerson [F-4] initiated the analysis of the maximum
flow probiem where there is more than one source and sink pair. They showed
that if the flows are from a set of sources to a set of sinks, then the
maximum sum of flows between the two sets can be obtained by solving a
maximum flow problem between a super source and a super sink in an
augmented network, where there are extra arcs of infinite capacity {rom
the super source to the set of all sources and from the set of all sinks
to the super sink. They also indicated [F-3] a solution procedure for
the more general problem discussed beclow, gave the formulation shown in
equations (2.2a, b, ¢) and indicated the solution method discussed there.

The more general multi-terminal, multi-commodity, maximum flow
problem for a capacitated network was formulated by Hu and Gomory [G-4]
as follows. Let there be sources Ns and sinks Ns.(s =1, «ivy qQ,

s' =1, ..., q') where flow s 1is from Ns to N, . Let xjj be the

1

The names of R. T. Chien [C-2] and W. Maveda [M-1] also should be mentijoned
in this connection. But for various reasons I will not be discussing their
work,
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flow s in the arc ij , and f(s,s') be the value of the flow s from

Ns to Ns' . The first type of problem is to

(2.1a) Maximize g f(s,s')
s=1
~f(s,s') if j = s
2., S v .5 . [
(2.1b) Subjuct to g xij % xjk 0 if j#s, s
f(s,s') if j = s’
(2.1c) § x5, < b, . (for all 1,j)
s=1 137 = 4]
(2.14) x?j >0 (for all s,i,j) .

Unlike the one commodity max-flow problem, the constraint matrix here
is not unimodular,2 so an integral solution is not guaranteed. Hu [H-3]

solved a special case of the above problem, the case of two commodities

in an undirected network wherec capacities bij are even integers by

using his max bi-flows min-cut theorem. His solution procedure invglves

the following steps. First the labelling algorithm is used to find max-flow
of the lst commodity. Then a cycle of flow cf the lst commodity {is

determined in such a way that by introducing some flow in the cycle, the

flow values in certain arcs are decreased, so that a flow augmenting chain

of the 2nd commodity is obtained to introduce the 2nd flow at the maximal
possible level without changing the flow value of the lst commodity.
Rothschild and Whinston [R-4] have extended this two commodities flow result

for a pseudo—-symmetric3 network. The linear programming solution of the

A matrix is unimodular if all the subdeterminants of the matrix have values
0 or 1. It has been shown (p. 125, [H-3]) that with unimodular matrix D .
and integral vector b , thc convex polyhedron DX > b has all integral
extreme points, and also if all the extremc points are integral and b s
integral vector then D 1is unimodular.

3Definition: A network is Psuedo-iymmetric if 1t has all cven nodes

a node 1 1is even if [ b11 1s an even intcgor).
1 .

-
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max-flow problem in the multi-commodity case is also studied by Gomory
and Fu [G-3). 1lere the arc-chain formulation is used. Consider an M

arc network with capacities b ee.y b, . A chain in the network can be

1 M
represented by an M vector with 1 in a component if the arc is used,

and 0 if the arc is not used in the chain. Let us define an arc chsin
incidence m-trix A = [aij] as follows
1 if the arc i is in the chain j

0 otherwise .

If xj Ts the amount of flow in chain j , the multi-commodity max-flow

problem is given by

(2.2a) Maximize Y ox,
S
3

(2.2b) Subject to { a3 5% SboE =1, oo, M)
h|

(2.2¢) x; 2 0 '

where bi is the capacity of arc i .

The matrix [aij] has a very large number of columns (defined as aj),
one column for each possible chain for each commadity. Any bhasis has only
M  columns and at cach step cnre has to consider onc additional column as

a candidate for the basis. Sco at any time we need to consider only a

M+ 1) « (M+ 1) matrix. Suppose we have M columns to start the

algorithm and get the dual price vector 1 = (nl, «eey ™) wherc each

M

L corresponds to a specific row. Notice that ¢, =1 for all j here.

The relative cost vector of every nonbasic column :\i is piven by

c.=1-ma, . If all Ej < 0 then the present basis is optimal, If

some Cj > 0 wc need to bring that column into the basis., A1l of the

L
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ui's can be made nonnegative by introducing into the basis columns

corresponding to slack variables in rows with negative ﬂi'S . Then the

problem of determining which nonbasic column to bring into the basis is
simply solved by the column generation scheine as follows. Use n, o as the

length of arc i and find the shortest chain (aj) connecting any

source-sink pair. If all naj > 1, stop since all Ej < 0 and we have
the optimal solution. If not, bring column aj into the basis.

Hu and Gomory also considered the feasibility problem where certain
flow requirements have to be satisfied, which is very similar to the previous
problem. Sometimes the problem of feasibility is cthlcd with the
necessity to minimize the cost of building the capacity. If cy is the
cost of building a unit capacity in arc i , we would like to minimize
Z cibi . This problem is discussed in more detail by Tomlin. The most
i
general case of the above problem, which Hu solved, is the case in which
requirements vary over different time periods. Here a set of requirements
has to be satisfied for each of T periods. The objective is to minimize
the cost of building a sufficient capacity. An example of multi-commodity
minimum cost flow problem with time varying requirements is solved in
Hu's book [H-3].

Tomlin [T-1] has formulated explicitly the problem of finding minimum

cost flow in a capacitated nctwork which satisfies certain flow requirements

for a directed network using both node-arc and arc-chain matrices, and for !
an undirected network using only the arc-chain matrix. 1In both formulations

he obtains a large scale lincar program having a special structure for the

constraint matrix so that the Dantzig-Wolfe decomposition principle can be

applied. After an application of the decomposition principle, a subproblem

(finding the shortest route problem between two terminals) must be solved

in order to gencrate columns. Many efficient algorithms can be applied to i

-
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solve these subpreoblems because, with proper manipulations, we can
restrict these problems so that they have only nonnegative arc cost
(shortest route problems with all nonnegative entries in distance r.atrix
are easy to solve).

More recently, Richard C. Grinold [G-5] has indicated a polyhedral
game approach (similar to Kornai and Liptak [K-3]) to the multi-commodity
max-flow problem in a directed network. The solution procedure involves
allocating flow capacity to the various commodities, solving a one-
commodity max-flow problem for each commodity and a very trivial linear
program at each step. The method is easy to code and involves simple
computation but is recommended only for suboptimization because of its
poor convergence property. He also indicated an extension of this
procedure for the multi-commodity min-cost flow problem, but with the
restriction that in order to make the problem feasible for certain
allocations of flow capacity we need to introduce high cost by-pass arcs,
parallel to the original arcs, which can cffectively double the problem
size.

So most of the work in multi-commodity flow is restricted to max-{flow
or to linear cost cases involving a capacitated network. The problem
considered in this thesis has no capacity restrictions - so a major set
of constraints is avoided, thus making the problem comparatively easier
to tackle. However, the nonlinearity of cost structure, particularly i
concave cost, introduces substantial difficulties. A look at the literature
on the concave cost minimization problem is appropriate at this point.

Philip B. Zwart [Z-3) has made an interesting observation for a

class of nonconvex programming problems of the form:

Minimize F(X)

Subject to ci(x) <0
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*
where F(X),Gi(x)'s are not necessarily convex functions. If X is a

local minimum and Ai's are the corresponding lagrange multipliers for
the problem, then, if the modified objective function F(X) + Z AiGi(x)
becomes a convex function, X* is also a giobal minimum for the problem.
By this one can sometimes recognize when a local minimum point is a
global minimum point. Unfortunately, if we do not have convexity then
we cannot tell whether the point is local or global minimum.

Willard 1. Zangwill [Z-1] has considered a special type of flow
problem in which the cost of flow in any arc is a concave function of
the amount of flow. This special type is when there is a single source
and a number of sinks or a single sink and a number of sources. He defined
the concept of extreme flow as one which is not a convex combination of
two other flows. The extreme flow corresponds to the extreme point of the
convex polyhedron generated by flow conservation conditions in node-arc
or arc-chain space. He characterized the extreme points in such problems
and showed that extreme flow corresponds to arborescence flow in multi-sink
single source or multi-source single sink problems. Based on this
observation he developed a dynamic programming algorithm to solve such
problems. Consider a network with source node 1 and sinks a and b ,

where b=a+ 1. A flow from node 1 of ra units to a and r units

b

to b 1is required at minimum cost. We know in arborescence flow that

some arcs will have r, +r flow, some will have r, flow, and some

b

will have rb flow. Furthermore we know that if the flow ra + rb is

separated at a node into r, on one arc and r, on another, the flow

b

will never be r, + r, on any subsequent arc. Define Ve(a) to be the

minimum cost of shipping ra units from node e to node a , Ve(b) to

be the minimum cost of shipping 28 units from hode e to node b , and
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Ve(a,b) be the minimum cost of shipping r, units from e to a and

r, units from e to b . To insure that no material is shipped from

b
b to node a , define Vb(a) and Vb(a,b) as very large numbers. A(e)
is defined to be all nodes reachable frdm node e using the existing arcs
of the network. Cij(x) represents the cost of x amount of flow in

arc (i1,j) , a specified function. Then the recursive relations are:

Vv (a) = Min {C

(r) + Vf(a)} for all e#a , b,
feA(e) a

ef

vV (b) = Min {C _(r,) + V_(b)} for all e # b
e feA(e) ef b f

V (a,b) = Min {C (r + r ) + V_(a,b),
e £,geAle) ef " a b f

Cef(ra) + Vf(a) + Ceg(rb) + Vg(b)} for all 2 #a, b

where Va(a) = Vb(b) =0 , and Va(a,b) = Va(b) .

These relations are solved recursively until Vl(a,b) is obtained,
which gives the minimum cost for the required flow. This method can be
generalized for more than 2 destinations. However, with n sinks the
number of recursive relations to be evaluated at cach node is 2" - 1 .
Hence, the calculations required become prohibitive for large n .

Arthur F. Veinott [V-1,2] has considered the characterization of the
extreme points of Leontiefa substitution system. The special network model
considered by Zangwill corresponds to a transhipment Leontief substitution
mode”. So, Veinott's approach puts Zangwill's algorithm in a mere general
setting. However, except for special cases (e.g., the one considered by
Zangwill), the amount of computational effort required to search the extrecme
points to find one that is optimal increases exponentially with the size

of the problem and so tends to be enormous.

aTho definition of Leontief matrix, as well as transhipment Lcontief
substitution model is discussed in the paper by A. F. Veinott [V-1,2].
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B. Rothfarb and M. Goldstein [G-1] in a recent paper considered
the one termiral Telpack problem. This is similar to Zangwill's one
sink, multiple source network problem, but they considered the cost
function obtained from that in Figure 1.4 by connecting the discrete
points by straight lines. Assume that the nodes are sequentially
nunbered from 1 to n , where the node n is the sink and the others are
the sources. If an arc connects nodes i and j , j > 1 , it will be
denoted by b(i,j) . If the flow is directed toward j it is positive,
and if directed towards i it will be negative. The cost curves are
defined by means of their points of discontinuity in derivative (break
points) for arc b(i,j) ; let [Wk(i,j),Ck(i,j)] represent the flow and
cost coordinates of the kth smallest positive value of flow at which the
cost has discontinuous derivative. Then w_k(i,j) = —wk(i,j) and
C_k(i,j) = -Ck(i,j) . Let Co(i,j) = Wo(i,j) = 0 . The level of flow x
in an arc can be expressed as a linear combination of the flow levels
at the nearest break point above x and the necarest one below x . To

accomplish this, let {Ak(i j)}k=+K be the set of numbers called flow
’ k=-K

indices associated with arc b(i,j) such that

+X
0 22,3 g1 and ) A1) =1,
- k=-K

where K 1s a large enough number to cover the entire required range
of flow values. If xa(i,j) > 0 , then only Aa_l(i,j) or Aa+1(i,j) s

but not both, can be positive and only these two indices can be nonzero.
K

Then the flow on b(i,j) can be represented as kz Ak(i,j)wk(i,j) .
==K

A solution of this problem is given by a lincar program.
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K
Minimize ) ) C, (1,3)°2,(1,3)
(1,3) k=-K
1ol ;1
Subject to Wo(4,3)2, (4,3) - W (3,1)x (§,1) =«
jli<y k==K k k jli>3 k=K k k 1

for 1 =1,2, ..., n-1 ,

where T, is the required flow from the source node to terminal node n .

Furthermore, there is an additional constraint; the set of flow indices
} k=K
k=-K

for each arc should satisfy the constraints specified above.

So the ordinary linear programming procedure for generating the solution
is not enough. Rothfarb and Goldstein show that any basis of the linear
program will have arcs of two kinds, Tl and T2 . T1 are the arcs
where one flow index is 1 and the resct 0, and Tz are the arcs with 2
nonzero flow indices. By a series of theorems they established an
intricate procedure which treats arcs of type 'I‘1 and T2 differently
and determine which arc to bring in the basis at each step. So the pavot
computation is far more elaborate than usual simplex method. Also the
procedure can converge to a local, but not global optimal point. Consequeatly,
it does not appear superior to the one-terminal versions of the algorithms
of Chapter 3 and Chapter 4 to follow.

At this point one of the simple variationsof the problem which is
easily solved should be mentioned.5 In this case there is just a single
source and a single sink with flow requirement f between them and a
concave cost function. Since it has been established that there must be
an extreme flow which is the minimum, there will be a single path between

the source and the sink. The flow in each of the arcs in this path will

5¢ f . To find the optimal path, use the cost of f amount of flow in

SThe procedure 18 cryptically mentioned by Zangwill,

W
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each arc of the network as the length of that arc. The shortest chain
between the source and the sink of thi. network will be the global minimum
cost solution.

Hoang Tui [T-2] has described a procedure that secks the global minimum
of a concave objective function f(X) with the polyhedral constraint set
DeR". The procedure starts with a local minimum point x° .which is
assumed to be a nondegenerate (a necessary condition) extreme point of the
polyhedron D . The procedure is illustrated for n = 2 case in Figure 2.1,
where D is OACEFG. For notational simplicity x° (origin 0 in
Figure 2.1) is taken to be the origin. Along its n distinct edges, n

pOiﬂtS yl’lg LI Y yl’n (yl’l

and yl’2 along OA and O0G) are chosen

Lk _  k ol,k

such that vy where £k is the direction vector of the kth

edge, el’k = Max {0 I F(Eke) 2 ul} » 0y = f(Xo) , and F(X) 1is the concave
extension6 of f(x) in R® . yl’k's are linearly independent vectors.
Within the cone Xx° s yl’l, ceey yl’n , (the cone Oyl'lyl’z), the value

of f(X) , is greatcr than or cqual to @ - The auxiliary problem at this

point is to find the most distant extreme point of the polyhedron D from

1,1 1,n 1,1.1,2
y y 'y

the hyperplane passing through vy s sess

(the line in

Figure 2.1) on the opposite side of the origin x° (the right-hand side

1,1 1,2
y 'y

of in Figure 2.1). This is equivalent to solving the linear

program

n
Maximize hX) = ] 2

k=1 K

Subject to X € D

6Concavc extension of the function £(x) is any function concave on the

whole space R"  and coinciding with f(x) on D .

oty e e T

i
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0atX° ¢

FIGURE 2.1
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R . -1
where A, 's are elements of the n dimensional vector A =B <X and

k
B is a matrix with columns yl’l, ceey yl’n .

. . . o .
If no solution of the above linear program exists, then X is the

1 .
global minimum because the cone defined by Xoyl’l, ceey y"‘ contains

the entire polyhedron. Otherwise, evaluate {(X) at the new extreme

1,1.1,2
y

point Xl (point L furthest away from vy in Figure 2.1).

Deteriiine a, = Min {al,f(xl)} (az < oy in our example) and find
2,kk 2,2

3

=1,2, ..., n along n edges (0y2

2’k) > o, , and also determine 2 -

and Oy in Figure 2.1)

y

1
02X such

that 62 = Max {O >0 ! p(exl) > az} . Auxiliary problems involving
1,k

as before, such that F(y

=2
smaller cones are gencrated by replacing one of the vy by X and

keeping the others fixed. (Do this for yl’k only in case the corresponding

Ak # 0 .) (For the problem of Figure 2.1, the two auxiliaryproblems are

2,1}2

finding the furthest points of D on the right side of vy and

q_-
yz"'XZ . No solution exist for the lst problem because the entire

polyhedron is on the left of yz’liz . For the 2nd auxiliary problem
F(XZ) is the soluticn., Now use point F in the same way that E was

uscd n»reviously.) 1In this way, more of the polyhedron is covered by each

succeeding sct of auxiliary problems; when the entire polyhedron is covered,
we have obtained the gleobal optimal solution. The advantage ef this
procedure is thar all the auriliary problems have the same constraint set

D . However, the procedure is not useful in the problem of this thesis
becauss dimension n of the polyhedral sct D is very large. The number
of auxiliary probicms generated when k  of the auxiliary problems are
solved iz " , an exponential growth, Whercas in lhc branch and bound
procedure Jdes-ribed in Chapter 4, the number of sub~problems becomes 2
when the ki subproblem is solved. Also h(X) is given in such a way that
we cannot use any «fficient method like the shortest path method to solve

the auxiliary problen.

e
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K. Ritter [R-3, C-3] has described a similar method of determining
the global optimal solution for the nonconvex quadratic cost minimization
problem with polyhedral constraint set. The procedure involves generating
cutting planes which exclude local optimal points without excluding the

global optimal point and then doing a local search (i.e., a search for a

local optimal point in the reduced set) on the reduced polyhedron. This
is equivalent to a variation of Hoang Tui's method,7 in which new local
search procedure is carried out on the section of the polyhedron cut out
by the hyperplanes generated by yl’l, cens yl’n on the opposite side
of origin. The generation of a meaningful cutting plane in Ritter's
method itself involves solving a quadratic programming problem. For our
problem (assuming quadratic concave cost function), both the generation of
cutting planes and a local search on the reduced polyhedron are huge
quadratic programming problems. So, the procedure is not that useful.
However, as we will point out in Chapter 5, some clever way of generating
the cuts by solving simpler subproblems, and also a simpler local search
procedure, may be a hopeful theoretical direction to pursue in order to find
the global optimal solution for the problem of this thesis.

A.Victor Cabot and Richard L. Francis [C-1] have described a method
of solution for the nonconvex quadratic minimization problem by ranking
the extreme points. The method per se is not applicable for our problem,

but the idea can be adapted to yield a solution procedure. Consider the

problem:

Minimize f(y) = CTY + YTDY

(p1)
Subject to Y € S , where S = {Y | AY = b,Y > 0}

7
This is mentioned in the paper described in the precccuing paragraph.
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where Y 1is an n-vector of variables, the matrix A 1is m x n , the
matrix D dis n x n , and vectors C and b are n- and m-vectors
respectively. dj j=1,2, ..., n are columns of the D matrix., Solve
uj = Min (d?-Y) , subject to Y € S , and assume that each of these n

problems has a finite minimum. Then consider the problem

Minimize
(p2) J

o3

) (cj + uj)yj

Subject to Y € S

where yj's are elements of the vector Y and cj's are clements of

n

vector C . Since f£(Y) = Z (cjyj + YTd.yi) , and YTd.

> u, , then
§=1 J J -

J
g(Y) < £(Y) .

1f Y° is the solution of P2, then a lower bound on the optimal
value f* of Pl is fl = g(YO) and an upper bound is fu = f(YO) . It
can be easily proved that if {Yk} is the set of extreme points of S
such that g(Yk) < fu then the optimum solution Y* of Pl is such that
Y* € {Yk} . So, the algorithm here involves searching systematically the
set {Yk} . To find the extreme points of S yielding the 2nd, 3rd,
4th, etc. smallest values of g(Y) , Murty's [M-4] extreme point ranking
method is used. In this method only one pivoting step (for the non-

degenerate case) is necessary to get each next lower ranked extreme point.

Thus, this whole procedure involves:

Step O:

Solve n lincar programs to obtain uj i=1, ...y n.

Step 1:
Determine Y© , the optimal solution of P2. Take fg = g(Yo) and

fu = f(YO) and Y° as the current best solution of Pl.
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Step 2:

Use the extrcme point ranking procedure to get the next best extreme
point solution Yk to P2. 1If g(Yk) > fu , then stop - the current best
*
solution is the minimum solution to Pl, and f = fu . If g(Yk) < fu .

then replace fl by g(Yk) .

Step 3:

If f(Yk) < fu , then replace fu by f(Yk) and replace the current
best solution of Pl by Yk . Otherwise return to Step 2 without changing

fu or the current best solution.

Howev ., this method is not directly applicable to the problem of this
thesis for the following reason. The objuctive function in our problem,
when a quadratic approximation is made for all concave functions, is

M
£Q(Y) = Zl (ijj + djyi) where d, <0

i J
nd yJ is the element of the vector Y representing flow in arc j .
‘re dj is a scalar, or, in the notation of P1, D 1is a diagonal matrix.

‘nce, uj = Min (djyj) subject to the flow restriction of our problem.

is subproblem is to find the minimum cost multicommodity flow in the

‘twork where all arc costs are zero except one, arc J , which has a

incar cost with negative coefficient d, . This yields a negative loop

3

;0 the objective function u tends to -~ (by passing a very large flow

b

in the necgative loop). Thus the method is not applicable for our problem
because finite uJ values (which are unbounded here) are nccessary to

form the subproblem P2. However, the following variation of the procedure

is applicable.

o 4
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2.1 Solution Procedure by Ranking the Extremec Points

The problem considered has the objective function

M
Minimize F(Y) = }

£
4 j(yj)

Subject to Y € S

where S 1is the feasible polyhedron in arec space Y 1i.e., Y =

i,]
3i>j

A, X, and X, is a P.,, vector {x%.} and satisfies the constraint
13743 ij ij ij

equations 1.1b and l.1lc. 1f we can find the upper bound8 Uj of the flow

in each arc, then we consider solving the problem

M
Minimize G(Y) = } C.y, where C,U = £(U,) (in Figure 2.2)
j=1 4 3 j3 J

Subject to Y € S

Then G(Y) < F(Y) in the entire feasible range of flow. Solving the
modified linecar problem is the same as solving shortest chain problems
between all pairs of requirement points where arc lengths are Ci's . Let

there be n positive requirement (r > 0) pairs.

ij

Step 1: !

Find the shortest chain, using Ci's as the distances of the arcs
and pass the required flow through the shortest chain. Let Y° be the
*
arc flow vector. Then a lower bound of the optimal value ¥  of the original

problen Fl = C(Yo) and an upper bound is Fu = F(YO) . The current best

solution is YO .

8A problem faced in the procedure of Chapter 4 and discussed there. A

trivial upper bound is the sum of all required flows,




f,(yi)-»

slope CJ.

U.L= Upper bound

Flow (yi) —_

FIGURE 2.2




Determine the 2nd shortest chains between all n pairs of requirement
points. Let Ai , be the difference between the 2nd shortest chain and
the shortest chain between source-sink pair ij . The list of n numbers

{a } 1is the amount of increment for the neighboring extrcme points of

13743
Y° , one (the smallest) of which corresponds to the increment of the next

best extreme point of S .

Step 2:

Let s and t be the source-sink pair which gives the smallest
increment (from the list) over Y° , among all neighboring extreme points

k'-l) so far determined. And let it be

of the extreme points (Yo, vea, Y
the neighbor of Ym(m < k - 1) . Then displace the {low rst from the
chain between s and t corresponding to the point y" tg the newly
found chain between s -~ t which gives minimum increment. Calculate the

k
new arc flow vector Y . If G(Yk) > Fu stop - the current bhest solution

%
is the optimal solution and F = Fu .

Step 3:

Solve the next best chain between s and t ; find Ast the
difference between previously found chain and currently found chain
between s and t . One neighboring extreme point of Yk nas increment
(b(Yk) - C(Yo) + Ast.rst) over Y° and remaining (n - 1) neighboring
extreme points have increments {G(Yk) - G(Ym) + increments over Y° of

neighboring extreme points of Y™ except Yk} over Y° . Include all

these increments in the list.

Step 4:

If G(Yk) < Fu then replace F, by G(Yk) . If F(Yk) < Fu replace

k

2
F“ by F(Yk) and current best solution of the original problem by Y

y
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Otherwise go to Step 2 without changing Fu or the current best solution.

So, in this procedure, after finding the 2nd best chain for all
pairs, we need to find only the next best chain for a particular node
pair at each iteration. To reduce the number of searches we could
simply concentrate only on loopless chains. A chain with a loop cannot
possibly be a minimum for the original problem because by taking out the
flow in the loop we can reduce the cost. J. Y. Yen [Y-2] has proposed a
good method of finding the K best loopless chains. However, to avoid
confusion one should note that a chain with a loop, which is an extreme
point in arc chain space, can also be an extreme point in node arc space.

So by ignoring looped chains, we may be ignoring some extreme points,

but these are obviously uninteresting ones. At any stage k in this
procedure we need to store only incremengs of the neightoring extreme
points of Yk over Y° cuch that G(Yo) + (increment of neighboring
extreme points of Yk over Yo) < Fu and no others. The relative merit
of this method compared to the methods described in succeeding chapters
depends on the efficiency of the kth shortest chain determination
procedure. For the general problem such comparisons are hard to make.

As a last note on the available literature on this TELPAK-type problem,
we should mention the work of G. C. Watling and J. H. Weber [W-2]. They
developed a heuristic algorithm which synthesizes, from the traffic data,
the network and also the best position for switching centers. This
heuristic procedure uses only the total amount of originating and terminating
traffic as the input traffic data and does not consider the traffic flow
between specific originating and termirating points. This is reasonable
if the traffic is statistically well dispersed between all points, and
this method can handle a very large problem. It is purcly heurlstic and can
yield a solution that is not cven an extrcme point of the problem we are

studying, and is not very mathematical in approach,.
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CHAPTER 3

The particular solution procedure1 described in this chapter can be
used to solve moderate sized problems (networks of up to 200 nodes) and
it is very efficient (i.e., the procedure generally converges in a few
iterations). However, it yields locally optimal points and one does not
know how near the value is to the global optimal value. In this chapter
strategies that are useful in obtaining the global optimal, using a
procedure that yields local optimal points, are described. Certain
statistical procedures will also be developed, including a sequential
sampling plan where further search for the global optimal point is

stopped when the cost of further computation becomes more than the

estimated gain in reduction in the optimal value.

For the main procedure, of this chapter, to work, all the functions
fm(ym) , the cost of y, amount of flow in arc m , have to be ;
nondecreasing concave functions in the feasible regions of Yo in
Appendix D it is shown that any concave function is continuous everywhcre
except perhaps at the left and right-hand end points of the interval.
Since the function is nondecreasing it has to be continuous at the right-
hand end point. This continuity property may not hold at the left-hand

end point; there could be a jump at Yo = 0 . Appendix D also proves

that both left-hand and right-hand derivatives D—fm(ym) and D+fm(ym)
exist at all points except the end points of the interval, and the

following relations hold:

L

This procedure was suggested by Bernard Yaged [Y-1] for concave cost
functions which have both first and sccoud derivatives, but we shall show
that 1t is valld for any unondecreasing concave cost function.

— i
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(3.1b)  (i1) D+fm(yi)

v

v

i - +
(3.1¢) (ii1) D» fm(ym) P fm(ym) v Yo in the open feasible

interval .

The nondecreasing property of the function guarantees that both left
and right-hand derivatives are nomnegative. The following discussions
and propositions characterize the optimal flow pattern.

By Lemmas 1.1 and 1.2 of Chapter 1 we have shown that, if the cost
functions are concave, in the optimal flow pattern there is a single
chain between each source-sink pair; i.e., for every source-sink pair
st , a required flow rst passes through a single chain p:t in the
minimum cost (optimal) network. (However, degeneracy may occur; two
chains may have the same cost.) We will show a stronger condition for

flow patterns where cost functions are concave.

Proposition 3.1:

If there are two chains carrying total flow r between a single

st

source-sink pair st then the entire flow I can be put in one of

the two chains without increasing the total cost.

Procf:

Suppose there are two chains Pa and Pb between source-sink pair

st carrying x, and x, ~amount of flow respectively such that
xa + xb = rst .

For any arc m 1in chain P. with flow level Ym + X, 0 the
contribution to the cost due to flow between a and t in this arc is

taken to be gm(xa) - fm(ym + xa) - fm(ym) . A similar definition exists

}




for the arcs in chain Pb . gm(-) is also a concave nondecreasing

function because gm(-) is obtained from fm(-) by shifting the origin

to y, - Define the functions C, (xa) = 7 g,(x,) and
a meP
a

ch(xb) = ) gm(xb) . From the above definitions, the cost of r

mePb st

flow is taken tc be CP (xa) + ch(xb) and both CPa(-) and Cpb(')

are positive sums of concave nondecreasing functions, hence they are also

concave and nondecreasing. Therefore,

X X

a b
Cp (%) 27 Cp (rg) +—C (0)
a st "a st a
*p Xa
CP (xb) 27 -CP (rst) + ;~—'CP (0) because T T X, + x,
b st b st b
and . ;
xa xb
(3.2) Cp (xa) +Cp (xb) 27 Cp (rst) + ——C, (rst)
a b st a st b

since CPa(O) and CPb(O) are zero. The scalars CPa(rst) and CPb(rst)

can have one of the following relations:

(1) c,6 (r

P st) = Cp (r.)

a b

(11) Cp (rst) > Cp (r_ )
a b

(i11) CP (rst)
a b

A
¢}
~
"
~
L

U

If (1) occurs then putting the entire LI flow in Pa or P results

b
in no cost increase by the inequality (3.2).

FRTEY 'wmu:aw;%:’*‘”‘
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1f (11) occurs, then putting the entire flow in P results in less cost

b
because
*a %
CP (xa) + CP (xb) > ;—-CP (rst) +—1_—--—-CP (rst) > CP (rst) .
a b st a st b b

And if (iii) occurs, then putting the entire flow in Pa results in less

cost because

X

CP (xs) + CP (xb) 2 ra
a b

.CP (rst) + ;E..CP (rst) > CP (rst) *
st a st a a

Thus the entire L flow can Le put into one of the chains without

any cost increase.l]

Corollary 3.1:

If there are multiple (more than one) chains between a source-sink
pair, they can be replaced by a single chain (one of the multiple chains)

without increasing the total cost.

Notation:

Pab c:pij means the arcs of the chain P between a and b 1is

a subset of the arcs of the chain between 1 and j .

Pyy

Proposition 3.2:

*
In the optimal flow pattern, if the optimal chain pij between
source 1 and sink j passes through nodes a and b, and there is also
*
a flow requirement between a and b , then the optimal chain pab
* *
between a and b 1is such that pabc 1;»)::l .

7 , i L | Id:
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Proof:

Let rij be the required flow between i and j and Tob

be the required flow between a and b . Suppose a precedes b
in the chain from i to j . The flow pattern is unchanged if we

consider requirements r! =r + LR and r' =1r .

fa = Ty » Tap = Ty bj - Tij

Since there is a single chain between 1 and a ,a and b, and b
and j , chain ab coincides with chain 1j between a and b , and

* *
thus Pab C:pij . If b precedes a in the chain from i to j then

flow pattern is unchanged if flows r! , ¢! r,, + Thp and

ib ~ iy * Tab T Tiy

]

aj ~ Tij °
* *

a, and a and j’pabCpij -

r Since there is a single chain between i and b , b and

Thus we can restrict our search for the optimal flow network to
solutions which have the following two properties: (i) a single chain
between each source and sink pair, and (ii) Pap C:pij if a source and
sink pair ab 1is contained in the chain of another source and sink pair

ij .

3.1 Definition of €-Optimal Routing

A routing (flow pattern) is called €-optimal if it has the above
two properties, and if the least cost chain for an additional flow of
€ units (where € 1is an arbitrarily small positive real number) betwcen
source-sink pair 1j 1s the same as the chain taken by the 1ij flow of
rij units.

The following example will clarify the concept of €-optimality.
For the network shown in Figure 3.1b, the costs of chains A and B are

shown in Figure 3.la by curves A and B respectively. R is the point

where the tangent of curve B has the same slope as A . Suppose




Flow —>
(a)

(b)
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Toe = Rl < R and <he entirec flow is in chain B . For an additional
flow of amount € the cheapest chain is A DVbecause the slope at 0

of A 1s smaller than the slope at R1 of B . Thus chain B 1is not
€-optimal. But if the entire flow is in A then an additional flow of
amount € will take chain A because the slope at 0 of B 1is greater
than the slope at Rl of A, and chain A 1is €-optimal. It is also

globally optimal. Suppose Tee © R2 > R, and the entire flow is in B .
An additional flow of amount € will take path B because the slope at
R2 of B is smaller than the slope at 0 of A . Similarly, if the
entire flow is in A , then an additional flow of amount € will take
chain A because the slope at 0 of chain B is grzater than the

slope at R2 of chain A . So, both A and B are €-optimal chains.
However, only A is globally optimal.

The algorithm discussed below searches for an €-optimal point. (The
relationship between €-optimality and local optimality is discussed later.)
The concept of €-optimality reveals a clue to the constructive approach
(of the algorithm) which the conventional definition of the local optimum
does not provide.

The following uotations are used in the subsequent discussions. P
is an M~vector where the element P is the amount of flow in arc m
corresponding to a feasible {low pattern (i.e., a pattern satisfying (1.1)
of Chapter 1). e is an M-vector of 0's and 1's. 1If e = 1 indicates
the inclusion of arc m and ey = 0 indicates its exclusion, then any

chain between any source-sink pair can be represented by a vector e

C(P) 1is the total cost of the flow on all arcs corresponding to point P

M .
(;.e., c(p) = Z fm(pn)) . & 1is a scalar and (P + §oo' - 6-ej) is a
1 i

m=

. , , i
point where & amount of flow is taken out from chain e of point P

| 4
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and redirected to chain e” . Fe(P) represents the total cost of all

the arcs in chain e of point P (i.e., Z fm(pm)) , and it is
ncchain e

a concave function of P .,

The following small example of Figure 3.2 shows a point can be
€-optimal but not local optimal. Figure 3.2a gives the cost function
EA(o) and fB(-) for the flow in chains A and B respectively of the
network 3.2b between source-sink pair st with flow requirements T
Suppose the entire flow is in chain B . And the left and right-hand
derivatives of cost functions in their present flow levels have the
following relation: D_EB(rSt) > D+fA(0) > D+fB(rst) . Then an additional
flow amount € will take the chain B because D+fA(O) > D+fB(rst) .
Hence the present flow pattern is €-optimal. But if € amount of flow

is displaced from B to A then total cost decreases because

E-D_fB(rst) > e-D+fA(0) . So, it is not locally optimal point.

Lemma 3.1:

For a concave cost function a local optimal point having a single
chain between each source-sink pair is an €-optimal point. An e€-optimal
*
point is a local optimal point only if the single path e  between every

source-sink pair also satisfies the following inequality
- +
(3.3) DF,(P) <DF (P) V e
e = e

*
where e connects the same source-sink pair as e . (This inequality
is satisfied by any €-optimal point for problems with concave cost functions
where derivatives exist at all points. Hence in this case a point is a

local optimum if and only if it is €-optimal.}
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Proof:

Consider a locally optimal pointv P having a single chain between
each source-sink pair. Consider a point Q within e—neiéhborhood of P .
Q 1is obtained from P by redirecting some 6(: €) amount of flow
between a source-sink pair from the single chain e* to some other chain
e . (There could be more than one chain and could be more thah one

source and sink pairs. But these cases of more than one different chain

can be reduced to only one different chain between a -source-sink pair

*

~ithout any cost increase by Corollary 3.1.) Q =P + $+e - §ce . Let

-k * *

w =e -e Ne,and F_, and F , be defined as cost of flows in
e e Ne

—% *
the set of arcs in e and e [1 e respectively.

CP + 6ee) = C(B) + F (P + 6:") - F ,(P)
e e
* *
=C(P) +F_  (P+5se)+F, (P+8e)-F_ (P)-F, (P)
e e Ne e e ile
* * *
C(P + 6-e) =C(P + 8¢ec ~ 8re + 6°e ) =C(Q + See )

€@ + F_,(Q+ 6-e*) +F, @Q+ 6-e*) -F (@ -F, @
e e Ne e e (e

CQ +F (B +F, (P+6e)-F (P-te)-F, (P
e e Ne e e Ne

*
The cost value F_*(Q + &-e ) depends on cost of flow in the arcs in the

e
—%
set e . At Q the flows are rcduced from the level at P by & on

this set e , and when &6 is added back the level of flow in these arcs

is the same as at P, so F__(Q + 6~e*) = F_,(P) . Similarly, we can
e e
* * *
show F, (Q+ 6e) =F P+ 60 ) , F_*(Q) =F_,(P - 6+e) , and
e Ne e (e e e

F, @ =F, (®

e e e fle
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Now, C(P + 8-e) - C(P + 6-¢") = C(Q) - C(¥) - (¥ ) -
(3]

L4F_,(P + G-e*) - %'F’*(P - G’C*)): €(Q) - C(P) (because F_,() 1is a
e e e

concave function) > 0 , because P is a local optimal point. So,

*
C(P + 8+e ) < C(P + 8-¢)

or,

(C(P + 6e") - C(P))} < (C(P + 6:e) - C(P)) .

Hence, extra 6(; €) flow is passed through the optimal single chain.
So, P is an €-optimal point.
Let the €~optimal point P satisiy the inequality (3.3). Consider
*

a point Q in €-neighborhood of P such that Q =P + §+c - 8¢  where

6(< ©

C(Q) = C(P + 8ec = €-e7) = C(P) + a-D+Fe(P) = 8D F_{P)

nv

c)

(because (3.3) is satisfied). Any point Q in this neighborlicod will
have the above relationship, so P is a local optimal point.

A point P is €-optimal if the following inequality is true for V e

€+ 6:c) - C(P)) < (C(P + 6v¢) = Clu))

or,

*
6'D+F *(P) S 6'D+FC(P) (because C(P + 8+ ) = C(P) + 6-D+F *(P))
e e

or, D+F «(P) < D+Fe(P) V e . If the derivative exists at all points
e

- + +
then DF ,(P) =DF ,(P) <D Fe(P) . So, the €-optimal point also
e e
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satisfies the inequality (3.3), and therefore is a local optimal point.

Thus for this case a point is €-optimal if and only if it is a local

optimal point.

The example of Figure 3.2 shows a counterexample if the inequality

does not hold. ||

3.2 Algorithm

In the description of the algorithm the derivative Df(+) of the

cost function at a point is used. If this derivative does not exist then

the right-hand derivative D £(+) is used.

Step O:

An arbitrary positive number representing length is assigned to
each arc of the network (e.g., Euclidean distance. Or an arbitrary
flow level is assigned for each arc and the derivative of the cost

function at the flow level is use¢d as the length of the arc).

Step 1:
Using the lengths specified, the shortest chain is determined

between each source-sink pair (if there are many pairs of sources and

cinks, Floyd's algorithm is used).

Step 2:

The entire required flow between a source-sink pair is passed
through the shortest chain between them. The total flow Y in each
arc m is determined. The total cost of the flow is determined. 1f
total cost is unchanged from the previous iteration the procedure is

stopped. (Note: 1f the flow in each arc remains unchanged in two

consecutive iterations, then the shortest chain and the total cost also

remain the same. However, the flow might change betwcen two degenerate
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points without having any change in the total cost. Cycling may occur
if we use only thce flow value to find the termination point. Such cycling

is not possible if the cost function is strictly concave.)

Step 3:

Derivatives of the cost function, Dfm(ym) , at the flow values Yo
+ . . .
are determined for each arc. D fm(ym) for functions having no derivative
at Yp * These derivatives are used as the new lengths of the arcs.

Go to Step 1.

3.3 Remarks

*
When the algorithm stops, then the specified chain pij between a

source-sink pair (ij) satisfies the inequality Z Dfm(ym)
*

A

mepij

) Dfm(ym) v Py chain, assuming derivatives exist. Now,

mep, .
1)

Df (y ) = D+f (y ) =D £ (y.) . The inequality X D+f (v.))

m’m m’m m’m * mm

mep,

A

z D+fm(ym) is true even if Dfm(ym) does not exist. Therefore, the

mEpij

point is an €-optimal point (from the proof of Lemma 3.1, where D+F +(P)
e
is the same as z D+f (y ) and vy represents point P and
* m m m
mcpij

p:j = e*) . The inequality (3.1) also is satisfied if Dfm(ym) exists;

in that case the point is a local optimum. However, a post-optimization
procedure is necessary to obtain a local optimal point for functions whose
derivatives do not exist. Take each source-sink pair and change the

lengths of arcs along the optimal single chain from D+fm(ym) to D-fm(ym) .
If the shortest route remains unchanged, then (3.3) is satisfied and the

point is a local optimum. 1f the shortest chain changes, then an improvement

adsdly




(reduction) in total cost can be achieved by using this new shortest chain.

The steps of the algorithm are repeated using this new point. Cycling

is not possible here, because, if a different shortest chain is obtained in

this procedure, the total cost strictly decreases when the flow is redirected.

The motivation for using derivatives of the cost function is the
following Kuhn-Tucker necessary condition for optimality for differentiable
cost function (i.e., Df(-) exists). The unrestricted minimization

problem, equivalent to the problem (1.1) with dual variables Aij for

constraints (1.1b) and ng for nonnegativity constraints (1l.lc) is
given by:
P P
M ij ij
L=} fmwh)— ) Aﬁ ) xli(.—rij - ) BZx; .
m=1 All ij k=1 *J All ij k=1
2i>j 31>]

Since each variable Ym is a linear combination of x?j variables with

coefficients 0 or 1,

oL k _
K" ) Df_(y ) - xij - sij =0 .
X, . k

ij mepij

The above equation and the Kuhn-Tucker necessary condition for optimality

gives the following conditions.

If xk > 0 then B? =0 and X

h

) Dfm(ym) and

13 13 i K
mcpij
k k
if x;; =0 then B, = Xk DECy,) = A4y 20 -
mcpij
The above procedure satisfies these conditions. Aij is the length

of the shortest chain between 1j

et e e ke
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The following theorem establishes the finite convergence of the

procedure. In practice a very quick convergence can be obtained.

Convergence Theorem 3.1:

For concave nondecreasing cost functions the algorithm described

above converges to an €-optimal point in a finite number of steps.

Proof:

We have already shown that if the above algorithm terminates, it
does so at an €-optimal point. Also we have shown that each iteration
of the procedure involves solving a shortest chain problem where the
initial distance matrix has nonnegative elements. Hence, the number of
steps in each iteration is finite (- N3 where the number of nodes is N).
So, finite convergence of the algorithm is achieved if the number of
iterations is finite. This is established by proving Property (a) below

for any nondecreasing concave cost function.

Property gag:

If the algorithm generates two consecutive distinct points Xz and

2+1 2+1

X 6.4 is obtained by one iteration starting from Xz) then the
1
total cost Z(X) strictly decreases, i.e., Z(Xl) > Z(X2+“) . This 1s

proved as follows.

Let the flow values in each arc m be yi and y:+1 corresponding

to two consecutive points, Xl and X2+1 (the feasible region in the

chain space). X£+1 is obtained from Xk by the change of a certain set
of flow chains between source-sink pairs. Let one such chain be changed

* *
from pij to pij . Since p1J is the shortest chain using Y flows

in each arc m
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+ L +_ [ i L ]
Z D fm(ym) 2 1 D fm(ym) (If the derivative Dfm(ym) exists,
mepij mE *
pij
then the inequality is also true when fom(yi) is replaced by Dfm(y;)).
*
If € amount of flow is redirected from Py to pij then the

J
resulting saving is:

ef T oo (l)- 1 ote(a)lzo

- %
mepij mepij
- L + L - *

because from concavity D fm Vo) 2 D fm Y where Pyj = pij - pij n pij

-% * *
and pij = pij - pij N pij) . Also from concavity

+ L _ + L + ( 2) +_ (
§ D fm(ym e) 2 § D fm(ym) > E* Df (v,) 2 E* DE (v + e)
mepij mepij mt:pi-,j mEpij

So, a further saving is obtained if a further € amount is redirccted,
and the maximum saving is obtained if entire flow rij is redirected
from pij to p:j . A similar redirecting of other flows through the
shortest chains reduces the total cost value and flow values yi+l
are obtained, hence Z(Xz) > Z(X2+l) . But equality is only achieved when
there is more than one shortest chain and cost functions are flat in the
region involved in the transfer of flows or when flow values remain
unchanged. 1In both cases the algorithm stops at Xl . So, if X2 and

L+1 2+l

X are distinct points then Z(Xl) > 2(X ) .

But in the algorithm described above the sequence generated by {Xz}
is the extreme points of the polyhcdral set defined by (1.1b) and (1.1c).
Since the polyhedral set has a finite number of hyperplanes it has a

finite number of extreme points. Nondecreasing Property (a) guarantees

L
that no two elements of X  correspond to the same cxtreme point. Hence,
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the number of elements in any sequence generated by the iterations of

the algorithm is finite. Thus finite convergence is always achieved. ||

3.4 Modified Procedures for Differentiable Cost Functions

For functions having derivatives at all points (i.e., differentiable),
all e-optimal points are local optimal points. In this case the following
modified procedures are sometimes used to avoid some local optimal points
and get near the global optimum. (i) In 1lst modified procedure if a

. . . 3/ .
1 is obtained starting from a point X" then the next iteration

point X£+
is started from a point i2+1 = Biz + (1 - 6)X2+1(0 < 8 <1) . However,
Property (a) may not be preserved. Similar arguments as in the proof of
Property (a) can show Z(ii) > Z(Xz+1) , but not necessarily

Z(iz) > Z(iz+1) . However, if B8 1is chosen properly in cach step to
maintain monotonicity then only convergence Theorem 3.2 below is applicable.
(ii) In 2nd modified procedure a convex combination of cost is used for

new starting point (i.e., here cost on an arc m = B-Dfm(il) +

(1r- B)'Dfm(xl+l)) similar arguments as in the proof of Property (a)

=2+1

can show 2@ > zx**1) . Now, zGY) - sz@YH + Q- B)ezx*Y <

,B-Z(iz) + (1 - 6)-2(22) = Z(il) . So, Property (a) is true here.

Convergence Theorem 3.2:

For differentiable concave nondecreasing cost functions the
modified (i.e., 2nd modified procedure and a special case of lst modified
procedure where B 1is such that Property (a) is satisfied) algorithm

converges to an €-optimal (also local optimal) point.

Proof:

Here termination procedurce is same as main Algorithm 3.2, So, {if

the algorithm terminates it Joes so at €-optimal point. Since the cost
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functions are differentiable, €-optimal point is also a local optimal
point (by Lemma 3.1). The shortest path procedures in each iteration
are finite. The sequence {XL} generated does not necessarily have
finite number of elements. However, convergence (not necessarily finite)
is established by proving the following Properties2 (b) and (c) in
addition to Property (a). Consider the algorithm to be a mapping M

which maps from a feasible region of flow X to X itself.

Propert b):

The feasible set X or, at least the subset in which the sequence

{Xl} generated by the algorithm lies, is compact.

Property (c):

The map M is closed.3 The properties are proved as follows.

(b) The feasible region in X-space is defined by the linear
inequalities in (1l.1b) and (l.1lc), hence they form a convex set which is
tlosed but which could be unbounded. 1In the solution procedure only the
required amount of flows rij is sent through the shortest chain. Thus,
the flow values on any chain in a point X2 in the sequence generated by
the algorithm, is bounded by Toe = Mi; {rij} . The set is bounded (since
tach element of X 1is bounded). The set is closed and bounded, and thus
:ompact.

(c) The closedness property of map M will be proved only for

‘unctions with derivatives, which is the case here. X and 6 are two

Properties (a), (b) and (c) are needed by Zangwill's theorem on algorithmic
convergence (Page 91, Ref. Z-2). 7This theorem is used to prove the
convergence of the map M defined below.

Closedness is a property of a point to set map. Definition: The c¢loused
map M 1s such that Xz > x" , ot ¢ M(xz) . and 0z +0° implicn

3% ¢ M(X9) .




notations used to define a feasible vector in chain-space. The polyhedron

S defined in Chapter 1 for X is also defined for 6 , i.e.,

ij
S =408 = {ek } Z dk >r.., V source-sink pair ij , 6: > 03 .

If there are n source-sink pairs with positive requirements, then only
n elements of X or 6 corresponding to an extreme point are positive.
The process of finding the shortest chain by using the derivative of the
cost function at the flow value on each arc at Xl , corresponds to a
local search operation to find a vector 0 which minimizes the linear

approximation of Z(X) in the vicinity of Xz , i.e.,

Minimize zxM + pzixM (e - xY

Subject to 6 € S , where DZ(Xz) is the derivative of Z(X) at Xz .

Since X 1s constant, the above problem is the same as the linear program:

Minimize  Dz(x%)-o

Subject to 6 € S .

If an extreme point 62 solves this problem, then 62 defines a new set
of shortest chains. The direction vector dl = B£ - Xz defines the
direction of improvement. The procedure of finding a point X of maximum
improvement of the cost function In this direction is to find X = Xz + 1-dl
which minimizes Z(xl + T-dl) subject to 0 <t <1 . Since,

X = x‘ + T'dz = (1 - 1)X + 1-62 , the vector X 18 obtained from Xl by

transfer of (ter,,) flow from the path corresponding to Xl to the path

1)

corresponding to 62 for varjous 1j . Becausc of the concavity (as

discussed before) the maximum improvement occurs when 1 =1 . So,
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Xl+1 - Xl + dz = 91 and the map4 M(X) 1is defined as:

M(X) = {e; Minimize DZ(X)+6' = DZ(X)-G} .
0'esS :

To show M(X) 1s a closed map one has to check: Conditions xl + x° R

L

and 6  + 6° where e‘ € M(Xz) = 6% ¢ M(Xo) . This is equivalent to

showing Minimum DZ(XO)-O' = DZ(XO)-GO . Consider the inequality:
8'eS '

Ipz(x®y-8' - p2(x°)-0'| < lpzx® - pz(x®) | fe'] < 8,°c

where [6'| < ¢ because of the compactness of the feasible set and :
61 +0 as X' o x° . ;
Since the difference is uniformly bounded in 8' by dz-c

[Min Dz(x%)-6' - Min DZ(x%)-0"| < 6,°c or,
e'

el

A e i RIS A A T R O

Ipz(x*)-6% - Min DZ(x°)-0"| < 6,c » (because ot ¢ mxY) .
e'

rne oA,

faking the limit over & , ¢ being a finite nuwber
IDZ(X°)-6° - Min DZ(x°)-o'| <0=>
0'

pz(x°)-8° = Min pz(x%)+6' => 6° ¢ M(x°)
8

=>M 1s a closed map.

Properties (a), (b) and (c) fulfill all the conditions of Zangwill's

heorem on algorithmic convergence. Hecre the solution set is the set of

The map M 1is described over the continuous variable X . However, it
uses only extreme points. Hence, it goes through only discrete points

]

|

i

of the set and corresponds to an iteration of the slgorithm. , i
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€-optimal points, so either the algorithm stops at a solution or the

limit of any convergent subsequence is a solution. ||

3.5 Strategies to get Near the Global Optimal Point

The major drawback of this procedure is that it terminates at local

optimal points and we have no idea how much less the global optimal

cost might be. We have tested computationally various heuristic approaches to
get mnear the global optimal point. The different approaches are as follows.
Approach (a) is suggested by B . Yaged, and he tested it emperically.

Approaches (b) and (c¢) are new.

(a) Using a Convex Combination of Flow Vectors or Cost Vectors

1

+
If Xl and XQ are extreme flow vectors in the 2th and (2 + 1)st

iteration, then the (L + 2)nd iteration is started from

il+2 = BX2 + (1 - 8))(9“+1 where 0O <8 < l. When B 41is near 1, the
change of flow is small between two iterations. Sometimes this approach
helps in climbing out of the valleys of the local optimals to get at the
global optimum. There is no one 8 which gives good results. The test

on different problems shows that usually the number of iterations increases
when such a convex combination is used.

Sometimes a combination of marginal costs is used instead of a h
combination of flows; i.e., cost on arc m = B-Dfm(xg) + (1 - B)-Dfm(xl+l)
is used. Bernard Yaged used different B values to get better local
optimals and he reported an acccptable range of 8 1in the interval
(.8, 1.2). The vsc of this over-relaxation procedure (i.e., B8 > 1) may
be advantageous for some problem, but in some problems if a B > 1 is

used, then some elements of the distance matrix may be negative. So some

apecial precaution is needed to solve the shortest chain problem.




&2
Sometimes instead of using marginal cost (i.e., Dfm(ym)), average
£.06.)
cost is used {(i.e., -§7-L— . Here the proof of convergence of the
m

algorithm may not be established. However, use of the average cost value
initially is sometimes helpful in getting a good starting value for using

marginal cost,-particularly when the cost function has a jump at O.

Sometimes a combination of average and marginal cost gives good results.
Each of the methods have been tested computationally for different

problems, but it is difficult to specify which works wherc.

(b) Speciaiizations of Step 0 of the Alpgorithm, a Systematic Scarch

for Better Starting Points

Different strategies are employed to get better starting points.
(i) Initially a local optimum is obtained using the algorithm above -
then to get a new starting point for the algorithm, all the arcs in which
the flow value is lower than a certain amount are made very expensive -

this results in using the arcs whose flow value is large more effectively

and not using arcs with low flow values. (ii) To segrch in a more spread
out area, arcs having positive flow values for one local optimal point are
sometimes blocked to get a completely different local optimum.

The proccdures (i) and (ii) are utilized around the best local optimal
value obtained so far, to determine whether it is better to search in the
vicinity of the best local optimal value (i.e., procedure (i)) or farthest
away from the best optimal value (by procedure (ii)).

From the test results it is rccommended that procedure (ii) should
be used initially to get a few very different local optimal points. Then
procedure (i) should be used to scarch near the best local optimal value

so far obtained.
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{c) Random Starting Point Selection Strategy and a Sequential

Sampling Plan

In this method (a similar method is suggested for travelling salesman
problem in Ref. [R-2}) the global optimal cost is estimated from a
series of observed local optimal costs. The local optimal costs are
generated by selecting random starting points (not necessarily within
the feasible region) for the above algorithm. Suppose that a sample §
of size n of local optimal points having values cl,cz, ooy cn has
been determined. We shall give a procedure for estimating the global

optimal cost given this information.

We have no a priori knowledge of the distribution of local optimal

costs, so it is assumed to be uniform between o and o + 6 . Given

c sees € We wish to estimate a and 6 . (This uniformity assumption

1°
in the case of a total lack of knowledge has the approval of both of the
Bayesian schools [R-1], i.e., necessarists (Jeffreys [J-2]) and
subjectivists (Savage [E-2, D-1]). Jeffreys argued for the legitimacy
of using a uniform distribution in case of a total lack of information
by quoting that "Bayes, in his great memoir, repeatedly says that the
principal (i.e., assigning equal probability or assumption of uniform

distribution) is to be used only in case where we have no grounds for

choosing between the alternatives.'" Edwards, Lindman and Savage have {

shown in a theorem that under the assumption of a uniform distribution

of parameters, the calculated approximate a posteriori distribution agrees
closely with the actual a posteriori distribution. (Here the uniform
distribution is assumed of the parameter rather than of the distribution
function itself. However, we can think of the distribution function

itself as a parameter.) So, the basis of the assumption is philosophically

coherent with the Bayesian approach.)

.M
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The estimate of o is the estimate of the global optimal solution.
The elements of sample S are independent, and each is from a uniform

density function between a and a + 8 . So, the likelihood function L

is defined as the following function of the sémple S,a and 6 :

L(S;6,0) == if a < @
0

= 0 , otherwise.

So, the maximum likelihood estimatcss5 of a and 0 are respectively
minimum (cl, cees cn) , and {maximum (cl, ey cn) - minimum (cl, cees Cn)}'
Let T and U be respectively, minimum and maximum elements of the

sample S . Then the distributfon functions of T and U , F(t) and

G{u) are as follows:

n
1 - F(t) = Prob (T > t) = (E_i_%_:_E) for a <t <a+ @
density function f£(t) = Qg%El = J% (0 + 6 - t)n-l for a <t <a+6

Gl

0 , otherwise.

Expected values

5Definition: The maximum likelihood estimate of © based on a random sample
S = (xl, ey xn) is that value of 6 which minimizes L(S;0)

(=f(x1,9)' cel " f(xn,e) where f(xi,e) is the density function of X,

with parameter 6) considered as a function of 6 for a given sample S




this estimator gives an idea of how good this estimator is.
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a+6 a+6 n-1
E(T-u)=/ (c-a)f(:)dc=f"‘;“)n(e'(;"’)) de =
a a
1
-=n6‘/’x(l—x)nm1 dx
0
= ng-8(2,n) = —
n )= n+1
where x = ELi%JE , B{2,n) is Beta function with parameters 2 and n and
g(a,b) = J}i_EZ_ , and rg = a-la -1 (r_'denotes a Gamma function.)
a+b
u - a\"
G(u) = Prob (U < u) ( 5 ) for a Susa+8
density function : g(u) = QQSE)~= IL"(u - a)n-l for o <u <a+ 0
dU e1'1 = =
= 0 , otherwisc
o+ a+0
n n-1
E(U - a) = (u - a)g(u) du = (u - a) —;-(u - a) du =
a a 6
at6
- u-o du
‘/( 5 )6 e
a
L {
n n _u-a 3
=n6fx dx—n+1,(wherc X = 8) i
0
n ] _n-1_ . fU =T\ __ 8
EU-T) = (n +1 n+ l).o T n+ 1 3 or, L(n - l) n+1
i
3N = __e____ V.U"T . . _L)”:_T_ - ‘
E(T) a 4 7= ° 4 h(n - 1) , SO, h(T — ]) a .
Uu-1T . . ?
Hence, ( pliawe l) is an unbiased estimator of & . The variance of
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vorsance (1 - L2 T) - sr - L2 nfe - BT - pfohpn - )
= (——)Z-E(TZ) - - f“l)z-a(uq‘) + - i 1)2~E(UZ) - a

Now,
o490
E(TY) = E(T - )2 + 2+E(T)+a ~ o = (t - a2 2 (6 +a- )" lae
& 3
0 2
of~ 4 -
+ A + P l)a o
1
2 n~1 2 20-a 2 2 20+a
—nefx(l-x) «dx + « +n+1-n6-8(3,n)+u +n+l’
0
(where X = ; 0‘)
2 2
- n0 |3 |n + aZ + 26-a - 26 + OI2 + 20+a
M+3 n+l (n+ 2)(n+1) n+1
a+6
2 2 2 2 n(u - ™t
E(UT) = EW - o) + 2.E(U)*a - o = (u a)“. = «du +
A 0
n0 2
+ Z(u + n l)a - a N
1
_ n+l 2 , 2n6-a nf 2 | 2nBeu
= nbd J/‘x dx + o + 1 nt 2 + + a4 1’
0

(where X

]
(=
@1
2
S

The joint distribution function of T and U is given by H(t,u)




H(t,u)

Prob (U suy,T <) = Prob (U < u) - Prob (U S u,T > t)

G(u) if a<u<t<a+86 [since, P(A) = P(aN BS) +

+ P(AN B)]
=G(u)—(y—é—') if a<t<uc<a+d.
321 (e, )
density function h(t,u) = —Tt-—a-l’l—- =0 if t >u
=_?_[__E_(u_t)n—l]=M(u_t)n~2 , 0 <t<u<a+8
at n n = =
0 6
= 0 , otherwise
at+d u at6 u
n(n - 1) n-2
E(UT) = ust*h(t,u) dtedu = — (u - ) ust+dt-du
o "o o Yo
o+9 u a+6 1
~nn-1) fu./t.(u - )" 2gpegy = Bln = 1) f u./
n n
® o o 6 a 0
1
n-2 n-1
[(x(u - a) + )1 - x) “(u-0a) “dx]du
a+0 q
= _l’l_(_fl_-n__l_)_ f [(u -~ a)n'wB(Z,n -1 +au - a)n—l'u-B(l,n - 1)]du *
o a
- t-c = = \\
where X =T t = x(u~-oa) +a, and u—t—(l—x)(u-—cx,/

o+6 o+0

=n(n - 1)-}8(2,n - 1) / (u 5 ) *usdu + a+8(1,n - 1) /
a n

(u - a)n—l du
u-a L

6 )
_ 1 - 1
= n(n - 1). -E—E . xn(ex + a).edx + _(ﬂ—[r}—-._l. o/
n+1 0 I—n_ 0
xn-l(ex + a)-dx (where X = g%g_)
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2
~ 1 ) ab o 6 AN I S
=n@-1 [n(n - 1) (n T2t + l) + n-1 (n + 17 n)] n o
a6 + a2 .

Hence,

2 2
. U-T\ (_n_ \. 20 2 2000 )
Variance (T T h - 1) = (n - 1) ((n +2)(n+ 1) re d )

n+1
2n ( L az)
(n - 1)2 n+ 2

1 n62 2 2nb-a 2 n92
*+ 2 + R Oy Y U YT Y
(n-1

n+2 % Yuya

Since

EW - T2 = Ew? - 20T + T2 = E@W?) - 2EQUT) + E(TO)

2 2 2
no 2, 2m6 ( ) 2 __g___) ( 26 )
(n + 2 to 4 n+ 1 a) 2\8ra + a4 n+ 2 + (n+ 1)(n+ 2) +

2 26u
a + n + 1)

- n(n - 1) -82
(n+ 2)(n + 1) )

Therefore, the unbjiased estimator of variarce (T - : : I) given by:

2
nn+ 2)(n+1) 2 _(Uu-T
n(n-1)Mm-1)mO+ 1)(n+ 2) U-1)° = (n - 1)

g ~ I is the estimate of the standard error of the estimator. I1f this

term is small, the variance of the estimator is also very small.

Instead of assuming a uniform distribution (i.e., B8(1,1)) for the

local optimals we could assume any 8 distribution. If we assume




c. -
{—l?r———} have 8(1,2) distribution, similar calculations can be made
i=1

to show that the unbiased estimator of o (the global optimal value) is
- ']
T - v-t — - 2n1+ 7\ where c_ = n!}1/2 .
1- Cn " In+ 1 (2n + 1) |n + 1/2

If the distribution is assumed to be 8(2,1) then the estimator of

o becomes {T - C -—EJLJL—~'}.
n 2n _c
n

A sequential sampling procedure can be used to estimate the global
optimal value where a trade-off is obtained between the cost of computation
and gain due to expected reduction in global optimal value. Assume C
to be the cost of finding one more local optimum. This is a function of
the number of iterations (on an average) to get to a local optimum and
the computing time per iteration.

The estimates of o and o + 0 when a sample of size n is obtaincd
are T -

n

u -T U - T
n n n n
o ol (o) o
————( and —————
n -1
o o

lU + respectively (where U“ and

Tn are values of U and T when the sample size is n). Assume that
the (no + 1)st sample will have a uniform distribution between the
estimated values of o and o + 9 . Then the expected value of Tn +1
o

is computed as follows:
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Let p(Tn°+l) be the estimated density function of Tn°+1 . Then

n -1
o)

1
%%+Q‘E‘m +n0 -T)'
[o] [o} n n

[+ ] [+]

Tn +1 = X if a« ix < Tn
o o
=T if T <x <a+6.
n n = =
o (o]
U -T
%
T U +
n n n -1
o)
E(Tnoﬂ.) = / xedx + / Tno-dx
U -T T
" T %
Tn T n -1
[¢) (o]
)] - T
% %
=T

n - 2(n° + 1), - 1) '

Therefore, given a sample of size n_, one of the following plans can

be used.

(i) Determine a function G(T) , monotonically increasing in T ,
which gives a measure of cost when the so far obtained minimum local
optimum value is T . We would like to have the sum of the cost of

computation and G(T) be as small as possible. Now the estimated

reduction in G(T) when the (no 4+ 1)st local optimum is found is

EJ(T) - G(E(Tn +1))] and the cost of taking onc more sample is C .
)

Therefore the plan should be: 1If

U - T
GIT - GIT - <C,
( no) n, 2(no 4 1)(no - 1)

, ‘ e ,_Ji




no further sample is taken. The best lccal optimum so far obtained is

Uno "o
accepted. |Note that: L(Tn +l) = Tn "2 D@ -1/ 1f
(o} (3] [o] °

UnO ) Tno )
G(Tno) - G(Tno T Z(a_ * Dn, - 1))‘ > ¢

-

then another sample is taken and the criterion function is recomputed.

The maximum number of samples N taken is bounded because (Un - Tn)

Uy~ Ty

2(N+ 1)(N - 1)

making the difference between values of G(+) at Tn and E(Tn +1)
o

is bounded by 6 . Hence, becomes small for large N ,

small enough to be less than C .

(ii) Define a loss function L(e) , a monotone increasing function
of e , which gives the cost incurred when the estimated expected
decrease in the global optimal value by taking one more sample

i.e., T - E(T is e . In this case the plan should be: If
ng no+l

U - T
( n n )
L - — <C ,
2(no : l)(no 1) :

no further sample is taken. The best local optimum so far obtained is
u -7
n n

e - o) o)
accepted. (;otc that [Tn - b(ln +1)] 2n + D -1 1f
o o ) o

\

U - T
( n,m, )
L - ZC >
2(no + 1)(no - 1)) =

then another sample is taken and the criterion function is recomputed.

The maximum number of samples N is bounded, because if the procedure

U —

stops at N then,
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U . -T U - T
N N N-1 N-1
L(z(u DM - 1)) <C and L(z(n)(n -/2)).2 .
So,

U1 Tvr e

a1ty " ale

N(N - 2) <

(Since L(*) 1is a monotone increasing function and its inverse L_1(°)

exists.) Or,

N -2 =TT
o
(where © 1is replaced by its estimator) N 1is bounded because N(N - 2)

is bounded. Hence, this procedure stops after a finite number of samplings.

This sequential sampling approach has been tested using C and L
as,respectively, an increasing linear functions of t , the average
number of iterations, and e , the estimated expected decrease in the
value of T by one more sample (i.e., C = at and L = be where a and
b are specified coefficients). In the solution procedure the value of
a/b used is between 30 and 40. A comparison was made of this sequential
procedure with the global optimal search procedure (of Chapter 4) by
determining the computation time of the global search procedure and actual
error and computation time of this sequential search procedure. About 25
problems of varying sizes (number of nodes between 6 and 35) have been
solved using both the global search procedure of Chapter 4 (with
approximately 2% error value) and the sequential search procedure of this

chapter (using a/b = 35). The estimated error upon termination of the
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sequential sear-h procedure was on the average around 3% while the actual

error was about 8 - 10% (casting some doubt upon our use of a uniform

distribution for the values of local minima). The computation time for

the sequential search procedure was around 50 - 60% that of the global

search procedure of Chapter 4. So, computationally, the sequential

search procedure seems to be attractive. However, we cannot compare

these two procedures for problems with a greater number of nodes because
of limitations on the global search procedure causcd by restricted

computer memory size and computational speed.

s . R

i st




CHAPTER 4 !
i

In this chapter, a solution procedure will be discussed which
converges to a value as close as desired to the global optimum, This is ‘
a branch and bound method. The procedure is an adaptation of a general
procedure due to Walkup [W-1] and Falk and Soland [F-1] to our special
problem. The general procedure requires the solution of certain sub-
problems. These subproblems, for bur problem, have a special structure
and we have developed special procedures to exploit this. Each subproblem
involves finding the shortest chains be;ween all pairs of nodes. The first
major difficulty faced in solving a large problem by this method is the
limited size of a computer memory. Some ways to get around this problem
will be described in thie chapter. The second major difficulty arises in
determining the upper bounds on the flow in each arc. An inefficient
upper bound is the sum of all the flows. Different types of heuristic
methods which yield more efficient bounds will be discussed. However, the
bounds are very critical, and choice of the wrong bounds may lead to

convergence to a nonglobal optimal solution.

4.1 Reformulation of the Problem

The provlem can be reformulated with the superfluous extra constraint
(4.1c) shown below. This constraint provides us with a range in which the

concave function could be approximated to develop a solution procedure.

This range I: defined below is critical for the effectiveness of this
procedure.
M
(4.1a) Minimize Z2(Y) = Z fm(ym)
m=]
(4.1b) Subject to Y £ §
o
6.10) Yeon 1 !
m
m=1




where
S = Y={y}|Y= z Alx, }: xl.t.;ri.,and Xl;Z_O
. i,j3i>j 3 k=1 M J 3
and interval
o ~
Em =10, Z rij

ij contains

ij ? a chain between
the arc m and i>j

At this point, the following definitions are useful.

4.2 Definitions

The linear approximation of a function fm(°) in the interval

. linr linr
Im = [lm,um] is the function fm () given by fm (

y ) =

m
- = = - ) -
a + bm(ym lm) where a fm(lm) and bm (fm(um) fm(lm,)/(um lm)
This is drawn in Figure 4.]. For a concave function

linr

linr
< . . ]
f (y ) { (y ) in the interva 1 and f

(ym) > fm(ym) outside

the interval Im

Linearization Error

. o ) - _ (linr . !
The difference em(}m) [fm(ym) fm (ym{] is called the

linearization error of fm(ym) at Y This error is nonnegative in

the interval 1 and nonpositive outside the interval 1
m m

4.3 Linearized Version of the VYroblem

In this procedure, instcad of solving (4.1), a linearized version

of this formulation, given in (4.2), is solved initially.

4
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M .
(4.2a) Minimize 2'(Y) = Z fllnr(y )

oy ® m
(4.2b) Subject to Y € § where S is as defined in (4.1)

M o
(4.2¢) Ye 1 1

m
m=1
linr . . S .

where f (ym) is the linear approximation of the function

. . o
fm(ym) in the interval Im .

Let Y11nr be a solution of (4.2) and YOpt be a solution of
(4.1). Define 2zMIPT o zvylinry | ogmixr oo linry g 2Pt L o5 (yOPYy
Then the following inequality is obtained
(4.3) lenr < Zopt < gmixr lenr +E

M . .
- linr linry, . . .
where E = 2 e |y and e {y s are lincarization errors at

mel BmVm m\“m

Yllnr = {yllnr} for intervals 1; . The first inequality is obtained

m
sy . o linr , R e
because within 1~ , f (y ) <f (y ) and the answer is within 19,
m m m° = m°m m
. . . 3 linr | . .
The second inequality is obtained because Y ! is any feasible solution
; -0pt . : . . . , .
of (4,1) and 7 is the optimal solution. The final equality is

obtained because the extra amount E is the sum of all linearization

errors.

1i i . .
z' 1T and zZ™*T will be a good approximation

If E is small, then
of the optimum value. The maximum value of E depends on the intervals

o s . .
1 's ; partitioning of these intervals into shorter ones reduces the
m

maximum possible value of F . The pencral procedure involves solving
subproblems of the form (4.20), (4.2b) sublect to (he additional constraint
that the flow in each arc m s restricted to lie din a specificd interval

[lm,um] . At each iteration, two new subproblems are gencrated from a

4
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given subproblem by dividing the admissible interval for one arc m'

into a left part [lm,,ym,] and right part [ym.,um,] and leaving the
admissible intervals for all other arc flows unchanged. Hence, each
iteration adds 1 to the'size of the set T of subproblems where T
has the property that any (admissible by (4.1t)) flow pattern is
admissible for at least one subproblem. (If the flow happens to correspond
to a point of division of any one arc, it will be admissible for two sub-
problems.) At iteration p , the original problem has been partitioned
into p subproblems. To be able to uniquely identify a subproblem by
number, we number the subproblems as follows. Assume the subproblems at
iteration p are uniquely numbered from 1 to p (such is the case at
iteration 1) . 1If now the subproblem k 1s partitioned into two sub-
problems by dividing arc m' at y , the subproblem associated with the
left hand part [lm,,y] is numbered k and the subproblem associlated

k

with the right hand part [y,u ,] is numbered p + 1 . Let Im’p be

the admissible interval of arc m for subproblem k at iteration p .
M o P M k
Then I I°= U n 1°? for all p . If we say that the kth
m
m=1 k=1 m=1
subproblem is solved at iteration p , we mean the problem

M
linr
{/.ba Minimize 2'(Y) = f (v )
) mzl m)kap m
(4.4b) Subject to Y ¢ S , S defined above
M
(4.4c) Ye n 1P
m
m=1
linr . ! . . .
where f (y ) 1is the linear approximation to the cost on arc m
m,k,p ‘m
k,p

corresponding to Im .

Bounding refers to obtaining the lower bound for each subproblem

(4.4); i.e., if Yii;r is the solution for (4.4), then
]
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lenr = Z'(Ylinr) is the lower bound. Define y AR Z(Ylinr) and

k,p k,p ) k,p k,p

20T s imum {Zilzr} when p is the number of subproblems solved.
’

$sP k=1,2,...,p

o«

Then the following inequalities are obtained

linr 2Pt < Minimum {Z

(4.5) VA <
SsP k=1l,...,p

A

yA =12 + E
k,p S,p s,p S,P

A

mixr} mixr linr

M

where E = 2 e (yllnr ) and ylinr is the mth element of the
» m=1 m,S,p m,S,p

linr
vector Y .

S,P
: . . linr .
The first inequality is obtained because each Zk p gives the
M ’
lower bound for the problem in the interval Il and the minimum
m=1
gives the lower bound for the entire interval, hence the lower bound for

Ik,P

Zopt . The second inequality is obtained because each Zti:r is a
’

opt
YA P is less than or

feasible solution of the main problem (4.1), hence

. " . X ; . mixr
equal to it. 1lhe third inequality is obtained because ZS X is one of
. »

the elcments over which minimization is done, and the final equality is

obtained because E has taken care of the linearization error. In
b

the branch and bound process, the maximum value of E is made small
3

Zopt is zllnr
S,p

made arbitrarily small in a finite number of steps as shown below.

so that a good estimate of . This above error can be

Morcover, the following propositions make the branch and bound procedure

computationally attractive,

Preposition Aol

Tt may not be necessary to break all the rectangles of a decomposition
down until tie maxinam of the ervor estimate Ek p for cach one is as
1]
smalt as the desirved accuracy of an answer, say €,
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Proof:

If any feasible solution Y° with the value 2° = Z(YO) is known

for the original problem (4.1), and if the solution Zii;r of (4.4) is
bl
linr o . ..
such that Zk P > Z° , then the optimal solution cannot lie in the
H
Moo«
rectangle I Im’p (because its lower bound has a greater value than

m=1
the value obtained at some other point). So, no further refinement of -

mixr
k,p

far obtained is taken as 2° and at each step all the intervals for

that subproblem is necessary. In the procedure, the minimum 2

which lenr > z° - € are dropped from further consideration., This

k,p
procedure of rejecting some intervals altogether hastens the process of

convergence. | |

Proposition 4.2:

The procedure of the algorithm described below remains unchanged if
the restriction (4.4c) is dropped; i.e., the kth subproblem solved at the

pth iteration is

M .
(4.4a) Minimize  2'(Y) = )} 0% (y)
’ 3
mel ™ k,p 'm
(4.4Db) Subject to Y e S .
Proof:
Let Ylin be the solutiou for this unrestricted problem and define
Zlin = Z'(Ylln) and Zmix = Z(Y]i”) . (Notice the diffecrence between
k,p k,p
Ylinr s Z]inr and Zmixr and Y]'n . Zlin , zmix . The last r 1is
k k k 3
dropped for the unrestricted problem.) Here Ylin no longer lies within

the interval so inequality (4.5) 1is not obvious. However, in the

M

k.p and in th~

restricted problem the constraint is Y ¢ SN 1 Ié
m=1
unrestricted problem the constraint is Y & S . Since




M
sN n Ii’p C S8, it is obvious that

m=1

lenr = Minimum Z'(Y) > Minimum 2'(Y) = len .

k,p = . k,p

M K YeS
Yesn n 1°°P
v
m=1

The better (smaller) minimum is obtained when the secarch is done on a

larger set than on one of its subsels. So, if len =  Miniwum {len}
S»P 41 P k,p
sy

where p is the number of subproblems solved, then the above inequality
plus the first inequality of the chain (4.5) establishes the first of

the following chain of inequalities:

lin opt .. mix mix L1lin .
(4.6) z 0 < 2Pt < Minimum {20 XU < ZMF o N g
S,p = = = k,p - S,P 5,P S,pP
k=1,...,p
X mix . . . o
Since all Zk p are feasible, the second and third incequalities
bl
follow as before. The final equality is also valid becausc Eq takes
ke 1
care of the lincarization error. Now the maximum value of E 0 is the
Sy
maximum value that the lincarization crror can have within
Moo lin Vin
n 1 »P Because in this case some yﬁ (mth element of Y ) may
wm=1

not be within the interval, the errors corresponding to those are negative,

And for the ones which are within the interval the error is positive and
is bounded by the maximum linecarization error of the interval. So, the

sum ES P is bounded by the sum of the maximum linearization error with
*

. Lo . . Llin
the intervals, The proposition 4.1 is also valid here because Ak p
’

does indicate at least a lower bound of the objcctive function on the
M

interval m
m=1
Propesition 4.1, which are necessary fer the alporithm to work, are

Ik,p

o . So, both the inequality chain (4.6) and

catisfied in this case.|

81
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If the restriction of bounds on flow in each arc is dropped, then
the solution of the unrestricted subproblem is accomplished by solving
for the shortest chain between each pair of sources and sinks with the
length of each arc equal to the slope of the linear cost curve and by
passing the entire required flow through the shortest chain. The order
of calculations in each step is N3/2 where N is the number of nodes.
Moreover, when any particular interval I;’p = [i;’p,u:’p] is subdivided
to [iz’p,r} and [r,uz’p] where 1§’p <r < u;,p , then because of the
concavity of the cost function the slope of the linear curve for [?s’p,r]
increases and the slope of the linecar curve for [;,ui’p] decreases as

shown in Figure 4.2. The two subproblems obtained by dividing the arc are

as follows:

(1) Solution of a problem where one arc length has decreased. Here
the modified solution procedure described in the algorithm can
be used to solve the problem in -~ N2 steps. Thus, considerable
computation time is saved.

(2) Solution of a network problem where the length of one arc has
increased. Usually, this requires solving the problem all over
again in which case the calculations are -~ N3/2 . However, if
the same arc is divided again and again, then use a very large
length for the particular arc and initially calculate the
shortest chain matrix and store it. Even though the arc length
has increased in a particular subdivision, it has effectively
decreased from the arc length used in calculating the initially
stov2d matrix. So, the modified procedure described in the
algorithm, using the stored matrix can solve this new subproblem

in -~ NZ steps.

RS , . , J ‘
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The algorithm is described in full detail below.

4.4 Algorithm

Step 1: (Initialization)

For each arc m , an interval I; = [O,um] is determined. (The
determination of u s the upper bound on possible flow on arc @m in the
optimal solution is difficult, and the convergence of the procedure
depends on how well it is obtained.) The linearized function 2'(Y) for
this set of intervals is formed and the unrestricted problem given by -
lin lin

1 . Zl (i.e., Minimum of

2'(Y) without the upper and lower bound restriction on variables) and

(4.4a) and (4.4b) 1is solved to obtain Y

ZTix . (The subscript indicates that this is the lst subproblem.) The

solution procedure requires solving the shortest path problem using Floyd's

algorithm between all pairs of points and passing the entire flow through

the shortest path between each source-sink pair. Ylln and Zmix is set

1 1
Ybest best

as and 2 , the best solution found so far. The information

Zlin

describing the intervals I; and 1

is stored as the first and only

item of a list. Set p , which indicates the iteration number, equal to

1.
Step 2:
Every item of the list for which the associated value of len is
greater than or equal to (ZbeSt - €) (where € 1s the pcrmissible error) i

is removed and discarded. TIf the list is now empty, go to Step 6.
Otherwise, select the item from the list corresponding to the minimum
value of len . Assume this is the value found when the kth subproblem

is solved. From among the intervals described in the selected item,

chcose the interval IS for which the error ey at the solution point is
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b 1i 14
maximum, i.e., e = Max {fm(ymin) - fmtEfp( m1n

)} and this interval
m

I [l ,u] is broken into two intervals Il = [é ,ylln] and
s 8’'s s s’'s

2 [ lin

s s

I ,us] . (The information about which interval should be divided
for each item can be obtained in the same step when the len is

1i
evaluated, so that ym‘Ln values for all arcs need not be stored.)

Step 3:

Compute the linear approximation to the arc s based on the

interval I; and leave all other intervals as in the kth subproblem.

(4.4a,b) is solved to obtain Ylln . Zlin and z™F . Call this

,mix

subproblem (k,p + 1) . If Z YbeSt

best
k,ptl is less than 2 ,

best lin mix o e
Z are replaced by Yk,p+l and Zk,p+l . Finally, the description

and

of the intervals for subproblem (k,p + 1) and the value of Zi13+l
bl

is
added as a new item in the list. (This step is an all-pairs shortest
path problem and requires - N3/3 additions and comparisons.) (A1}
other subproblems ({(p - 1) at most)-except the kth onc at this stage

will change its second subscript to p + 1 from p because these sub-

problems will be used in the next iteration only.)

Step 4:
. 2, 1 .
Step 3 is repeated using ]S in place of Ts . Call this subproblem
(p+1, p+ 1) . However, herc the length of arc s (supposc it

*
connects n and 1) 1is shortened to d . (This is bm as defined

nl
2
in (4.2) for interval ]m . Here¢e m=s and ]m = 1§ .) The new
*
distances between any two nodes ij is djj =
* *
Min {d + d +d, ,d.,,d +d + d, . where d.. is the shortest
i1 nl nj i} in nl i ij
distance between § and § when the are is not shervtoned. (The optimal
solution 15 obtnined with only - N2 calculations,)
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Step 5:
Delete Z;i: and the description of the intervals used in the kth
]

subproblem from the list, Add 1 to p and go to Step 2.

Step 6:
best
Stop. The vector Y is the feasible solution to the original
problem and its value ZbeSt is within € of the optimal value.

4.5 Remarks

Various options other than those given in the algorithm can be used.
The choice of the arc to be considered for further subdivision can be
arbitrary. Using the same arc again and again for a few iterations reduces
the storage requirements and can be done efficiently. Also, the sub-
division point, given an interval and an arc, can be the mid-point of the
interval, the point x where the linearization error {fm(x) - f;fifp(x)}
is maximum or a point which divides the interval such that the maximum
linearization error in each part is equal. The relative merits of these
can only be tested empirically. However, the use of yiin as the point
of partition yields good results.

This branch and bound algorithm is equivalent to generating a tree
as follows: Step 1 produces node a and puts information about the node
o. a list. Step 2 finds any pendant nodes of the current tree that need
not be considered further, flags them, and deletes information about them
from the list. If the list is empty, it stops. 1If not, it chooses a
>endant, unflagged node (call it node x) and creates two descendants of
that node. Steps 3 and 4 perform calculations on the two new nodes and
idd information about these two nodes to the list. Step 5 deletes

Information about node x from the 1li.t, flags node x and returus to

itep 2. The algorithm terminates at Step & when all the nodes are flagged.

Crmmm R h-n-uuh--un---u--u-l‘
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At any stage of the algorithm, all the intervals over which linearization
is made and which are associated with the terminal nodes of the tree,
cover the entire set of initial intervals I: and hence the polyhedron

S .

Convergence Theorem 4.1:

Given any arbitrarily small value of € > 0 and assuming that each
function fm(ym) is concave and nondecreasing,1 the algorithm described
above terminates in a finite number of steps and correctly produces a
feasible solution with the criterion value within € of the global

optimal value.

Proof:

Solution of two subproblems is neceded in each iteration of the
algorithm. Each of these subproblems is a shortest chain problem with all
nonncgative entries in the initial distance matrix. Hence, cach can be
solved in a finite number of steps (i.e., maximum - N3 stups, where
N = number of nodes). So, we will only have to show that numwber of
iterations p needed before we go to Step 6 is finite for a given € ,
and also that once we go to Step 6 we have found a feasible solution with
criterion value within € of the global optimal value.

Suppose in some iteration p we have reached Step 6, i.e., all the
pendant nodes of the tree (all p subproblems) are flagged. According to
Zbest lin

- € i Z for all values of k  (i.c.,

flagging rule K,p

k=1, ..., p) . Since all values of k cover the entire feasible region

e — e ————————e =

JNnndccrcuslnb pioperty Is necessary here becanse it establfohen the
continufty of the function at the right bhand boundary, which is necded in
the proof., Also, this preoperty juarantecs that all the catries of the
distance matrix used to solve the shortest path problem are vonmnegatice,
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f M P M
i.e., 1 1°= vy n Ik’p) of problem (4.1) and ZoPt is the global
m m
\ m=1 k=1 m=1
ptimal solution, then (Minimum {Zii:}) < A , and
k ’ -

:best - €< (Minimum {Zilg}) < ZOPL , S0 we have obtained Zbest within
k. »

€ of the global optimal solution.

Therefore a2ll we will have to show is that we go to Step 6 in a
‘inite number of iterations p for any given € > 0 , Observe that the
‘unctions are concave and nondecreasing, hence they are continuous except
verhaps at zero flow value (where there can be a jump). So, except for
ntervals in the neighborhood of zero (wﬂich we consider later) the

Ainearization ervor em(-) for any interval [ym,ym + Im] is bounded by

he following inequality:
+
. + - f .
e () s (E Gy + 1) - € ) g (D .00 Im) )

here D+ aenotes the right hand derivative. The first inequality is due
o the fact that fm(') is nondecreasing, and the second inequality is

ve to the fact that fm(°) is a conccve function., The right hand
erivative D+fm(-) is finite except at Y = 0 (shown in Appendix D).
yw at each iteration one of the intervels is partitioned into two, so

me Im decreases. 1If we can shod that by repeated partitions of an
iterval, Im + 0 , then em(') will become less than €/M in a finite
imber of steps. Consequently, the total error satisfies

M
= I em(-) < € at some finite number of iteration p for all k .

oP el )
nce from (4.6) ¥/ in z°Pt < [ Mintmum {Zmix} = ZbCSt <

S,p = = \k k,p =

=], ,P
ix len + E and since total eryor E is bounded by €
P S,Pp 8,P 8,p
i 3
est . Zlin + € or, ZbeSt - € < 211" < Z1 ¥V k=1, ..., p because
= s‘p = S'}‘ = k’p
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lin . .. Llin
z is the minimum element of all the Z !

A . So, in finite number of
S,p k,P

iterations p, all the pendant nodessatisfy the flagging criteria. Hence,
we reach Step 6 in a finitce number of steps. We now consider intervals
containing O , then to complete the proof we show that lm > 0 .

The bound em(«) < D+fm(ym) . Im is not valid for an interval Tm
with left hand endpoint 0 if D+fm(0) docvs not exist. 1t appears that
we might find ourselves reducing the length of im without reducing the
linearization error at the point of division Yn below the amount of
discontinuity at 0 . This could happen if Yo 0 . But the procedure
guarantees the flow value on each arc is ecither zero or at least

r, = Minimum {ri.} . So, such points do not exist.
ijar, >0 M
1]

The only other possibility for the maximum linearization error to
remain large for some interval ]S in subsequent partitions is if the
partitions are always very ncar one of the boundary points (i.e., one
Is decreases very little in each iteration and approachcs a nonzero
limit). But, in _his case, because of the continuity of the cost curve,
the actual error es(ys) at the point whers the interval is partitioned
eventually becomes < €/M . (Because close to the boundary point where
the linearization error is zero, linear approximation and actual curve

are close together.) Since partition is made on an arc s  such that

e kys) = Maximum {em(ym)} , the total actual error

m

M
o i € > { . ¥ re ' 6

mél em(ym) <M (S(ys) is < where es(ys) < €/M The valuc
of Z™* and len for this subproblem is very close, so they will be

k,p k,p
flagged off by the rule prSt - € < len (because ZbCSt A

= “k,p = fip

L lin ) best . lin

+ E A - L < 7 ¢ ) €) . Therefore,we
Lk,p }k,p or, 2 [k.p “ 7k.p and Pk,p < ) Therefore, we

cannot have repecated cccurvence of small chinges of errvors.  Hence, no

E =
k,p

interval of maximal error can be repeatedly subdivided, yet its Tength not

approach O .

!:_________________________::.......................-....-.-.;m.-u--iiiEIllllllllIII----‘-""




Therefore, for all cases, given arbitrarily small € > 0 number of
iterations p 1is finite and we get a feasible solution with criterion
value within € of the global optimal value.}l
4.6 Difficulties in Using the Branch and Bound Procedure on Step Functions

with Decreasing Step Size and Constant Interval Between Two
Consecutive Steps

The rule of dividing an interval of an arc at an interior point
(flow level) might, when applied to step functions, give rise to linear
curves which have higher values than the original cost functions within
the interval of interest, as shown in Figure 4.3. So, the solution using
linear approximation does not necessarily give a lower bound on the total 4
cost and the procedure is inapplicable.

The above difficulty is avoided if the Jivision of intervals is made
at the nearest point of discontinuity (i.e., at B instead of D in
Figure 4.4}. Then the linear curve does represent a lower bound within
the interval. Each subsequent partition reduces the error value. But if
the restriction (4.4c) is dropped, as it is for our algorithm, then for
some points outside the interval on which linear approximation is based,
the linear approximation curve lies below the original cost function

(shown in Figure 4.4). While working with interval OB , a solution can be

at flow level C and will have a positive error e - This point C can
then be a candidate for further partition of interval OB , but this is
impossible. So, for this method to be successful, the restriction of

bounds needs to be maintained, and thus one of the advantages of our
algorithm is lost. Even 1in case the interval bounds (4.4c) are maintained,
the points where partition can be wmade are restricted to points of
discontinuity. So, the reduction of error beyond a certain level will

not be possible, and depending on the structure of the problem this can

be quite high.




Cost —»

(1]
Flow (ym)—-*
FIGURE 4.3
&
B, C D U .
0 f -

Flowly ) —*

FIGURE 4.4




92

This prohlem can be sclved by using any arbitrary small € ercor by
the modified method suggested by J. E. Falk and R. M. Soland. As shown
in Figurec 4.5, where D is the point cof splitting of the interval
(O,u] , the cost functions have open left and closed right hand intervals
for each step, So, it is a lower semi—continuous2 function. One can
define a function f;(-) for each fm(-) , which is a convex envelope.3
Thus, the subproblems are convex programs and of considerable difficulty.
Convergence is guaranteed for any small € (not necessarily finite
convergence) and proved in Reference [F-1]. Due to the unavailability of
a simple convex programming code, this procecdure is not tested computa-

tionally.

4.7 Limitations of the Algorithm

The two major limitations for this procedure arz as follows:

(a) To start the procedure, we need to specify the upper bound on
the flow in each arc. One of the trivial upper bounds is the sum of all
the flows. This can be very large and if initially we start with this
large uppner bound the error value is large and it will take a considerable
amount of partitioning to reduce this error to a small value. 1ldealiy,
if we corld start with the upper bound at slightly more than the optimal
value, we would get quick convergence. However, there is no theoretical
way to determine such bounds. At the same time if we assume too low an

upper bound the algorithm can yield a wrong answer, as will be evident

2
Definition: Let yo € C. Then f(+) is lower semi-continuous at y0
if for every € > 0 there is a & > 0 such that if [!y - yoll < & and

y € C then f(y) > f(yo) - €, f(*) 1is lower semi-continuous on C 1if
it is lower semi-continuous in each y € C .

3Defmition: The highest convex function which fits below fm(') .




CONVEX ENVELOPE
OVER [0,D]}

)Opcu end
] Close end

——

3 3 ;
S l CONVEX ENVELOPE
d OVER [D,U]
D U
0 -

Flow {y ) —>

FIGURE 4.5

93




94

from an example discussed below.

A procedure for generating upper lLounds on arc flows that we have

testec by computation is as follows: Let the length of the arc m' for

which the upper bound is sought be zero and let the length be fm(rst)/rSt

for every arc m # m' . Here LI is the minimum, nonzero, specified
flow requirement rij . We use Tor since if any flow uses an arc, the
flow will be at least roe and the smialler the flow the higher the cost
per unit flow, i.e., length. Find the shortest chains betwecen all pairs
of nodes 1 j . Send flow rij along the shortest chain between i and
j for all i j 3 rij > 0 and uée the resultant flow on arc m' as the

upper bound. While making arc wm' free and every other arc as expensive

as possible might appear to give maximal possible use of arc m' , che
following example shows that it mav fail to do so. It then might be hLoped
that if the upper bound so generated {ails to be Jarge -enouph, the
resulting solution given the bound will be at the bound (which can then

be relaxed), but the cxample shows cven this is false. 1In spite of this,

it seems a reasonable heuristic.

Example:
Consider a three node nectwork with requirements T, = 1, Tyq = 4
and ryy = 1 and cost functions as shown in Figurc 4.6.
Upper bounds using the procecdure are U =2 ,U =5, U0 =2,
12 13 P
The best solution respecting these bounds s (y12’y13’y23) (1,4,1)
with total cost = 5.1, Here none of the flow is at its upper bounds, so

the bounds won't be relaxed. However, actual minimum cost solution is
(yl"yI;'Yo3) 2 (H,0,9) with tot ) coat - 1,8,

Empivical cevidence given by colviag the problom with ditterent cers
of upper bounds shows that converpence rate for a pivin problem is very

much dependent on how small an upper bhund is used for the flows op the
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arcs of the network. Tt seems that these effects arc insensitive to
networx structure and flow pattern (i.e., disimilar networks tend to show
a similar ratio of improvement when better upper bounds are used).

(b)Y The second limitation of this method is the core size of the
computer. As the tree grows, in a large problem, we need to keep in
store a large amount of information specifying the sets of intervals
corresponding to pendant nodes. Moreover, to take advantage of only N2
calculations for the arc shortening subproblem, we nced the shortest
distances as well as information about the paths. So, for each node of
the solution tree, three matrices of size N x N (N = number of nodes
in the original problem) necd to be stored. Since interval bounds are
integers, we can pack the information as onc bit of information and use
the upper half of a matrix to store it, and use the lower half to store
the distances. So, the number of nmatrices can be reduced to two matrices
of size N x N . When k  partitions are made, the total number of
matrices is 2(k + 1) . 1f nuthing has been blocked, then the total
number of core locations required is ZN?(k + 1) . This can be very large
and often exceeds the core size of a fairly large machine, even for a
network with only 30 to 40 nodes.  Instead of storing all the above

information in the core, two things can be done:

(i) As soon as any set of matrices is generated, it is kept in a
disc file. In the testing, an unbufferced binary ravdom dicsc
file is used to store this information, By writing cach

matrix on a sct of pages and going divectly to thono payes 1o
reading it when necded, considerable time can be usaved.  This
was Attempted with o 35 node network using four papes Lo write
each matrix., The disadvant.oge of this method is that consider-

able time is wasted in reoad np and writing these matrices,




(ii) 1Instead of storing the information in matrix form for each
unchecked node in the tree, we could simply keep track of the
path and keep the information about which arc is subdivided
at each node and at what poeint. Then at any step all the
interval iqformation can be calculated by tracing the path,
This requires no storage on disc files. The subproblem where
a particular arc is shortened cannot use the modiiied algorithm
because no information is stored. Moreover, when the tree
grows considerably, a substantial amount of computation has
to be done for generating the interval information needed. So,
the saving in disc file reading and writing is offset by
computing time, and this method may not be very efficient

either.

For large problems, the best procedure scems to be a combination of
the above methods. For a few stages, path information is used Lo generate
a matrix and then the disc file is used to store the matrices. Thus at
any point not too much calculation is needed to generate the interval
information and disc reading and writing is not too frequent. (The time-
shared interactive computer program developed by Stanford Research
Institute named TREE (Reference [N-1]) is good for this type of work.)

A program has been written for the branch and bound procedure for a
network of up to 35 nodes and a number of problems have been solved, The
program and a brief summary of data on solutjon of the sample problems

are listed fn Appendix B,
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CHAPTLER 5
In this final chapter, a post-optimization procedure for problems
with discontinuous cost functions with decreasing step sizes (Figure 1.3 1

of Chapter 1) will be discussed. Also, a variation of the problem in
which the requirements vary in different time intcervals will be formulated.

Finally, the scope of possible future research will be outlined.

[

5.1 Post-Optimization Proccdure

Both of the methods discussed in Chapters 3 and 4 assume continuity
of the cost except at the left-hand cxtreme point. However, most of the .
practical proolems encountered do not have continuous cost functions but
functions of the form shown in Figure 1.3, To obtain a solution to this
problem, the discrete points constituting the actual cost curve are
approximated by means of a continuvusz nondecreasing concave curve.  Since
the approximating curve is noudecreasing and concave, it is continuous

everywhere except at the left-hand extreme point (as shown in Appendis D).

(Ideally, the continuous nondecrcasing concave cost curve gly) «hould be
such that, if f(i) is the actual cost of 1 channels, and ‘f u is the
u
. . ) . . |
maximum number of channels possible (he absolute error } brei) - g(i)|
i=0
should be minimized over all g(y) . However, this is itself a difficult
and unsclved problem. So, the ideal case cannot be achieved, but
represents an area of possible future research.)  Then the method of either
Chapter 3 or Chapter 4 can be applicd to obtain the approximate solution
of this modified problem (i.e., with nondecreasing concave cost function),
Finaliy, the tollowing somewhat arbitrary local improvement procedare can
be used to obtain an approximate solution of the originat disercte

variable problem. Some reasons for chooesing this particular procedore will

be discussed in the remarks following the procedure,
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Assume there are n source-sink requirement pairs, and number these

pairs arbitrarily, from 1 to n .

Algorithm:

Step 0:

Let Y be the flow in arc m in the current solution to :he
problem. Consider the ith source-sink pair. Find the chain, c¢:1 it
chain P , through which the centire flow of the source-sink pai; 1 was
passed in the solution of the continuous approximate problem. (Both the
procedures of Chapter 3 and of Chapter 4 give rise to a solutior with a
single chain between each source-sink pair.) Let W equal the Jargest
flow value with cost less than the cost of flow Yo Let
tm = fm(ym) - fm(wm) . For cach are¢ m e P , let Zm =YL T Y (see
Figure 5.1). (If the required flow between any source-sink pair is
integral (assumed herc), then the flow level ym in every arc is also
integral (as proved in Appendix C). Hence, fm(ym) is defined. Also,
Cm , defined below is integral.)

Let Z = Minimum {Zm} = Zm' . Then rcduce the {iow in chaiu P for
meP

source-sink pair i by amount Z ., This guarantecs a reduction of the
cost by at least tn' (possibly more becausc there can be more than one
|

arc at which the minimum is attained). 1f 7 is greater than existing {low

in the chain P corresponding to ith pair, go tn Step 3.

Step 2:

For the resulting flow pattern, determine, for all m , the value,

called Cm , of tho amount of flow that can be sent through an arc m
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without incurring any further cost (see Figure 5.2).

Using Cm as the capacity for each arc m , find the maximum flow
F between ith source-sink pair by the Ford and Fulkerson max-flow
labelling algorithm as refined by Karp and Edmonds [E-1}. (The network
considered here is uﬁdirected and the labelling algorithm mentioned above
is for directed networks. So, it is necessary to convert the undirected
network to a directed one by replacing each undirected arc by two directed
arcs of opposite directions. From now on, all chains will be referred as
paths because they are directed.)

If max flow F < Z , then restore Z amcunt of flow back to the
path in Step 1.

If F > Z , then further reduce the flow in the path determined in
Step 1 by amount (F - Z) . Send amount F of flow through the paths

determined by the max-flow algorithm.

Note:

The Cm valuce for at lcast one of the arcs in the path traced in

Step 1 is zero (at m' where m' minimizes Zm) . So, the paths obtained

by the max~flow algorithm do not contain the previous path.

Step 3:

Add 1 to the value of 1 . If i <n, go to Step 4. If

i=n+ 1, let 1 =1 and g0 to Step 4,

Step 4:
If F<2Z for n consecutive steps, then stop. If not, go to

Step 1.




Theorem 5.1:

The algorithm described above terminates in a finite number of steps.

Proof:

The finite termination of the algorithm depends on the finite termina-
tion of any sequence of flow reduction steps and the finite termination of
the max-flow algorithm in Step 2. Since all of the capacities Cm at any
stage are integral, the refined procedure of Karp and Edmonds will yield
a finite bound of (1 + 10gc/c—lF) for each max-flow problem where ¢ is
the maximum number of arcs across a cut-set and F is the maximum flow.

In Step 2, if any flow change takes place then there is a decrease in
the total cost by at least the amount of the smallest discontinuity in any
cost function, since it does not cost anything to send the flow through
the alternate paths found by the max-flow algorithm. The monotonic
decrease in cost guarantees no cycling. Only a finite number of improve-
ments is possible since the total cost 1is bounded below by zero (i.e.,
total cost > 0) . Also, if no improvement is obtained n times
consecutively, the algorithm stops. Thus, termination of the algorithm is

achieved in a finite number of steps.!|

5.2 Remarks

The f:llowing remarks are pertinent to the above procedure:

(1) This is a procedure to be used after a flow pattern has been
found by the method of either Chapter 3 or Chapter 4 based on
a continuous (except al left-hand extreme point) approximation
of discrete cost data. There 1s no guarantee that we will
obtain the global optimal point for the discrete problem. The

concept of local optimil v. lue {s not applicable herc because




(ii)

(iii)

(iv)

(v)
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the variables (flows) are discrete.

It is not apparent whether we could have obtained more
reduction in the cost by considering source-sink pairs in a
different order.

For any set of sourcce-sink pairs, some flow may be diverted
from the initial unique path to one or morc paths found by
solving max-flow problems. Yet Step 1 considers only the
original path and not the deviations determined by previous
max-flow solutions. These other paths are not considered
because the flow in these paths is generally small compared to
the flow in the original path. Hence, the minimum reduction
Z (obtained in Step 1) may be more than the flow values of
these paths. Then, no cost improvement could take placc.

In Step 3, if F < Z , then no improvement, with respect to a
given source-sink pair, in the total cost is possible using
our algorithm. It is possible that an improvement can be
made by using flow increases greater than Cm . While the
rerouting is then not free, it is possible that F  can be
made larger than 7 at a smaller cost increase than the

decrease we ottain by reducing the flow in P by the amount

F . To do this, we have to consider the relative sizes of
steps in the cost functions., This is a rather involved
procedure and was not attempted here.

The values of Zm and Cm depend on the width of the steps
in the cost curve (i.e., the difference between flow values at
two consccutive «teps in the cost curve). The value of 1t

depends ou the height of the steps in the cost function,

i ———— “""'!lllllllllll-l--n—--—d“
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There is not much improvement possible if step widths anc
heights are very small--so, in that case, this procedure is not
advisable. In case th¢ cost functions consist of a few big
steps, this procedure tends to give reasonable savings.
(vi) In the case when the cost function is similar to Figure 1.4,
this procedure can be applied with the redefinition of Zm

and Cm as shown in Figure 5.3.

5.3 Future Research Directions for This Problem

The most promising theoretical direction to pursue in solving the
general network synthesis problem with continuous concave cost functions
seems to be the cutting plane method proposed by Ritter. 1In this method,
each local search procedure should be a simple subproblem (such as a
shortest path problem), and the generation of cutting planes to exclude
local optimal solutions without cutting out the global optimal solution,
should be simple enough to be handled easily, even for large problems.

To make the procedure of Chapter 4 attractive, it is necessary Lo
find a good upper bound of the optimal flow in each arc. Research toward
finding a reasonably good method could prove fruitful.

Finally, research sceking better methods of generating a good solution
of the discrete cost problem, given a solution of the continuous
approximate problem,may prove worthwhile. But the problem is very

difficult and the procedure will almost certainly have to be heuristic.

5.4 A More General Research Problem

A somewhat more general, and realistic, situation than discussed
earlier is the case where the requirement matrix changes over different

time periods. The capacity should be built, at minimum cost, at the start
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of the process so as to meet the requirements for all succeeding times,
using different routing during different time periods. The programming

formulation is given as follows:

Xij(t) = A vector of dimension Pij where its elements x:j(t)

represent the amount of flow through the kth chain between
source-sink pair i i at time ¢t ,

-~

Aij =M x Pij path~edge incidence matrix, whose (m,k) element is
1 if the kth chain between scurce-sink pair i j traverses

edge m or 0 if it does not,

Y(t) = 2 A, . X,.(t) = An M-vector where element y (t) is the
ij ij m
i,jai>]

total flow in edge m at time t .
C = An M-vector where element Cm is the total capacity necessary in

edge m such that it meets the requirements for t = 1,2, ..., T

time periods.

Here we have to minimize the total cost Z where

zZ =

[t fc 4

fm (Cm) . 1

m=1

Suvject to Cm 2 ym(t) vV t=1,2, ..., T and for all arcs m .

P
ij K
x, ., (t) r, (t) for all source-sink 4 § and all t =1,2, ..., T
k=1 0743

v

(t) > 0 €forall t and 1 j.

In this formulation, the number of variables has increased enormously.
An efficient solution procedure isx not in sight and can only be found if

the problem of this thesis 1s solved first, I
A
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However, an even more complex problem faces the telephone company.
The requirement matrix changes over succeeding years and can be forecast
at the beginning of the planning period. The cost of rearrangements
(i.e., dismantling the facilities between certain nodes and putting them
between certain other nodes in different periods) of facilities is also
given. An initial network has to be synthesized which will meet the initial
capacity requirements. Additions and rearrangements in succceding years
must be planned. There may also be yearly budgetary constraints. All of
these must be solved in such a way that discounted total cost over several
years is minimized. This problem is much more complex than the one
attempted in this thesis and a heuristic solution procedure can be a

challenging extensior of this work.
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APPENDIX A

AAS 128 n2/87/12

5C LANGUAGE: FORTRAN FOUR, GE 635 (MARK TW0) COMPUTER
17ZC 132 X MACHINE, 1 MICRO-3ECOVD MEMORY CYCLE

15C SIMILAR T9 I3M 362-65 OR COHC 64an,

28C PROGRAM FOR A LOCAL SEARCH ALGORITHM OF SOLVING A
25C MULTI-COMMODITY FLOW PROBLEM UNDER CONCAVE CO3ST.
32C GIVEN FLOW REQUIREMENT MATRIX R, COST MATRIX X

35C COST OF F(I,J) FLOW ON ARC (1,J)=K(I,J)*F(I,J)**7,
42C Nz VUM3ER OF NOOES IN THE NETWORK,

45C INPUT DATA FILES SHOULD SUPPLY VALUES OF R % K.

58 FILEYAME ZDATA

55 INTEGER R(34,34),CNH(34,34),0(34,34),F(35,35),S5

60 INTEGER Y

65 REAL K{(34,34),D(34,34),C0(34,34)
7 19 FORMAT (5Y,F9,2,15)

75 26 FORWMAT (5X,F%,3)

% 3¢ FORMAT (13,4X,13,14)

g5 43 FORMAT (3X,I13)

SO 52 FORMAT (213,14)

$5C SUPPLY THE INFORMATION ABOUT N,2
128C VALUEL OF COEFFICIENT OF CONVEX
125C AND IXITIAL NUYM3ER OF SAMPLE NO
l1p PRINT,"N,Z,2DATA,B,NO"

115 INPUT,N,7 ,ZJATA,B,NO

127 vlz=nN-1

125 DO 19¢ I=1,VI

138 1i=1+1

135 DO 1#a3 J=11,VN

142 1272 READ (ZDATA,1®) X(I,J),R(1,J)
145 PRINT,1,d,0C1,d) RI 42

156C STARTING FR2M 4 RANIOM POINT

195 gz ¢ ITRAC=2

160 158 S=5+1

165 22 174 I=z1,N1 ¢ 11:=1+]

177 DO 177 J=11,N

175 1F(KCI,J).LT.1#2F) GO TO 167

1ge DI, D=tpt2 ¢ 53 TO 177

185 167 Y=RRAYI(].A) ¢X=RIDCI.2

19¢ FCl,J)=ClZ2nev4 |7y ) /2

195 PRINT 5°,1,J,FC1,0)

202 DCI,d)= (7K (1, )0/ (F(1,JY*%x(1-2))
205 172 0(J,1)=2(1,J)

21eC  CREATION OF INITIAL CH(I,J) MATRIX
215 268 20 27h 1=1 N

220 D0 270 J=1,N

225 270 CH(l,t)=d

23p DO 3en -1,

239 3482 D(1,1)=n

24rC STARTING OF ITEZRATIVE PROCESS,
245 ITRA=zA3NCOV=-pNCO=2

258C CKREATION OF C(1,J) MATRIX

,INPUT FILE,
COMBINATION 3




AAS 128 d2/€1/172

255 468 DO 453 I=1,N
269 D9 45p J=1 N
265 45€ C(I1,J)=d
27¢C  FINDING THE SHORTEST PATH
275 D0 582 M 1N

2808 DO 522 1=1,N]

235 11:=1+1

29¢ IF(D(I,M ,GE, 19d2) GO TO 53¢ |
295 DO 5923 J=zI1,V

322 A=DCI,M)+D(M,J)

35 IF (D(1,JdY.L5.A) GO TO 53¢

318 D(1,J)=0(1,M)+D(M,J)

315 D(J,13=DC1,J)

329 C(1,J)=C(I,™

25 CU,H=CwJd,M

338 S5ma CONTINUE

335C CHECKING FOR CONVZIRGENCE

340 ICHE=?

345 D0 527 I1:=1,N

35¢ 20 529 J=1 N

355 IF (CH(1,J) JEQ. C(I,J)) GO TO 51¢

389 CH(1,d43=C(1,d4)

365 GO TO 522

376 517 ICHE=ICH®+1

375 52& CONTINUE

388 NCHE=NxN

385 IFCICHzZ,EZR.NCHE) NCO=2

39¢ IF(ICHE .EN,NCHE .AND, S.EQ.1) NCOV=2
395 IF(ICHE.ZQ.NCHE .44, COSTT.GT,.COGT) ANCOV=2
AZ#C UPDATING THE FLOW MATRIX

425 D20 558 I1=z1,\N1

41¢ J1:=I+41]

415 D) 557 J=l1i,N

429 559 F(1,J)=#

425 IF(NCOV LEQ. 2 GO T7 555

A38 PRINT,"FROM,8T,[7,FL V"

435 5595 ) 60d 1=z21,N]

447 11=z1+1

445 20 677 J=11,N

452 IF(RCILJILEQR.?Y 532 TO 6§42

455 IF (NCOV, Nz, MPRINT 3¢ ,1,J,R(1,J)

462 X=r(1,J)

455 Y:1

479 550 L=C(1,J)

475 1F (1.GT,L) GO T 57¢

480 F(I1,L)=(1,L)+X

485 GO T2 94¢

490 S5Tn F(L,1)=F(L,1)+X

495 587 IF (L.ER.J) 62 TO 959¢

57 1F(NCOV,NEL.N) PRINT 42,L
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AAS 128 A2/n1 /12

585 =L

51 G2 TO 5658
515 592 I:zY

522 Sve CONTINUE
525 IF (NCO .EQ. 2) GO TO 757
538 IF (NCOV ,ER, 1) NCOV=#®
535C CALCULATION OF NEW DISTANCE MATRIX

54¢ COST=¢

545 D3 Tpd 1:=1,N1

550 11:=1+1

555 DO M2 J=11,4

562 COC(l,Jd)=(K (I JJ))*((F(I,J))*%x7)

565 COST=CIST+Ca(],d)

57¢ IF (F(1,J).EQ7.2) F(l,J)=1l

515 D(I,J):((Z*K(I,J))/(F(I,J)**(I-Z)))*B+(1-3)*(0(1,J))
586 D(J,I1>=3(1,d)

525 7m¢ CONTINUE

598 PRINT,"TOTAL COST=",CO°T

595 1TRA=ITRA+]

cep GO TO aer

675 750 PRINT,"CONVERGENCE AT ITERATION NO =",ITKA

Gl ITRAC=ITRAC+]ITRA

515 IF (S.GT.1)50 TO 71%8r

627 COSTT=COCT ¢ COHASTU=COST

625 G To L°¢

63p 78F 1F (CoaTT .Ge, COST) COGTT=COST

635 Ir ( COSTY LT, COGTY €OS3TU=COGT

649 IF (S.LT.N2) GO TD 15k

€45 TRAz(COSTU=-COZTINI/(Z-1D

S5A IF (S, NE.N2) GO T3 904

655 C¥z1TRAC/S

CO2 PRI NT R JERR,, M T 0N

S5 AUPPLY THE CHONFFICLIYNANT oF THZ Lo3S FUNCTION aY)
677C CavPUTATION COST FUNCTION,

575 PRINT, "FE,CN"

s ¥
§%¢ JNPUT, 00
675 UHA ITECCrEREY LT (O IM)) Gy TD L2
AP N4 T
650 17 €7 ,aT. W) G99 Thoaerd

e 5y TY 197
sy 1227 Pl T, 00Tl 0y PR
117 ST02 24
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APPENDIX B
AASSR | e2/73/12

5C LANGUAGE: FORTRAN FOUR, GE 635 (MARK TWO) COMPUTER
16C 132 K MACHINE, | MICRO~-SECOND MEMORY CYCLE

I5C SIMILAR TO IBM 368-65 OR CDC 64ner.,

26C PROGRAM FOR A GLO3AL SEARCH (BRANCH-BOUND) ALGORITHM
25C OF SOLVING A MULTI-COMMODITY FLOW PROBLE™M UNDER

SEC CONCAVE COST. GIVEN FLOW REQUIREMENT ¥ATRIX R,COST
35C MATRIX KS, N=NUMBER OF NODES IN THE NETWORX, COST OF
4PC FYC(I,J) FLOW IN ARC (I,J)=KS(J,I1)+KS(I J)*FY(I Jd)*%x7
45C IVPUT DATA FILE SHOULD SUPPLY VALUEJ OF R & KS

5 COMMON DY,DX,FY,R,CY,CX,N,NE,K,L

55 REAL DY(SS 35) DX(55 39) ZA(IU') ZLOIPE) ,KS(35,35)

6P REAL D(lzfr)

65 INTEGER SClZe) ,KECI#?2) JLECIOR) CY(35, 35),CX(35,35),R"
M INTEGER C(leﬂ)

75 INTEGER R(35,35),FY(395,35), L3(35,35),F(iem)

2r FILENAmME ZDATA

85 1€ FORMAT (5X,F9.2,15,F8.2)
S 20 FORMAT (XS,QX,IS,I4)

95 3¢ FORMAT (3%,13)

128 32 FORMAT (17,F12.2)

185 34 FOR®AT (17,2Fla.2)

l1eC SUPPLY THE VALUES OF N,Z,INPUTFILE,NUM3ER OF PAGES
115C FOR EA4CH DATA 3LOCK(=NUMBER OF VAHIQBLF /5195)

12€ PRINT, "N ,Z,ZOATA,NP"

125 I4PUT, V,Z,ZDQTA,?P

130 Nl1=N=-1 ¢ Rvzienpe

135 90 1pe 11,80 11=1+1

142 DO 1ew J=11,N

145 READ (ZDATA,18) K3(1,1),R(I,J),KSCJ, )

15 ler IFC(RCI ) ,GT. ™), ﬁ”? (R(1 J).-_.QW))WW R(I,J)
155 D0 150 I=1 N1y T1z1+1

168 D0 152 J=11,N

165 IF (KSCI,Y,LT, LfrP®e)Y GO TO 12

178 DYC(I,d)z1e2p

179 6O T2 15¢

187 120 DYCL,JY =S, DY+ S (L, 3) % (RM%%Z )Y ) /RW)

185 t5e Dvad, 1) =YL,

152 DO 15 1:1,

195 Dy(l,1)=2

2re 1Sse CX(I, 1) =1

205 NS :-e

218 CALL SHORTEST

215C OBTAINING 30UY25 ON FLOW ON EACH ARC.

20 DO 3fP K=l ,Nlg K1:=K+1

225 DO 36F L=K1, N

230 IF (KS(K,L).GE, 1err) GO TO 29¢

235 D ,L)=e

24F CALL ARCHANGE

245 R(L X)) =Y (K,

25¢ DY(K,L):(KC(L,K)+(K‘7(’ LIds (oL, K))x%7)) /R(L ,K)
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255 G) TO 3~»

268 290 OY(K Ly

255 322 JY(L,,K)IIV(K,L)

27vC STARTING 2F 3RANCH & 301D PROCEIURE,

S75C CREATING A RANDIY 3INARY FILE TO STORE THE DATAS,
280 OPENFILE SDATA k%, "R",1,252627)

285 CaLL IF 3RZAK(3753)
297 NEzl sMF=z}

235 Nymz |

32 CaLl SHORT=ZAT

35 373 332 [=i,le”

3le 337 S(I)=7

319 S(1y=z1e 1
32 39 352 1=
325 0D 357 J=
3o L2l ,d)=n
335 3% L3,
a7 GO TH 622
349 4 KzME(NF)Ys L=LF(YF)

357 Sz SUA)

359 IF (NF.20, VD) G0 T 428

357 1Pz2%(Nr-]1)k\VP+])

365 CLLL Ur=Aa)  SOATA, ), 1P, 0P)
3¢ 1Pz [P4+NP

375 CALL USEADY (5)ATA,C,I1P, V")
38> Nyz N

385 00 Al Mol N

35f¢ J-INTCCq=-1) /7)) +1

399 1M~ Nx(J-1)
477 CY(1,d)=Cem
445 17 (l.Lz.0) 4D
41y L3010 =INTCDC
419 L3Iy D=0y (M-
400 50 TD aly

425 117 OV Iy =)

AT Y (L DDV L,

439 415 CHNTIN<

117 427 W (¥ Y 2XS K I QL3 L)+ 7 =R (NFY#%7 ) /(L3 (X , L) -F ("F))
445 CALL ARIHAMNGE

450 LsL¥ =L 3L, %)

459 L340 (K)z )

452 00 437 (=1t

459 45 TFCSCIY 7.7y 50 T3 Aae

T) al=
1))
L3¢, 1))« 2y

(
Ale qnd Nus
475 52 T3 55¢
e Sar Nzt
(U IRHAER ALY

A% 525 ) HAY Lzl,Nly Dhzli+d

A5 20 54r J:-ll, N

SY¢ 1F (RS L,0) 055, 17P2) G0 1D )¢
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525 IFrL2Gd, 1) 27..0%) T 51/
Si? DY(I,J):AS(I,J)*(L)(l,J)**Z-LB(J,I)**?)/(L&(I,J)-L%(J,I))
517 \\') T) 544

527 517 WL, M =(S (S, DI+, )« (LICT () *e7))/L3( T,

525 G2 T9 54»

537 53+ DHY(I,J)=trr2

535 542 IY(J,D=dv (I,

597 IFCIRZ E2, 1) 69 T2 54¢@

545 IF (L3L%.57.) 39 I 943

55% DY (KL= & (< LY KCCF (YT« 4Z )= (L3LL¥ 7)) /(F (NTY-L3LY)

555 G9 T) 546

D67 543 VY (L L)z (T (L YK SR LY = (F(NTY w2 )) /R ()

565 545 V(L K)oV K,

517 lK(K,L)-(wf)

ST5 LCL %)L 5Lk

27 540 L LL THOINTLST

579 IR==z=¢

501U 058 3D 555 Tzl,Nle 11:=1+]
5995 00 555 Jzll,

sne w:<J—1>~v+1

625 (M zv(I,.)

618 17 (FY(I,J) LT, 000,103 50 1) S5%
515 17 (FY(1,J) LE.L3C1,0)0) 29 T3 930
S0 L 301,002 AY ey e, ), 0 J, 1)
615 =Ci-1)s 44

530 AL ACT, Y+ (LG, 1) /120

§35 105z

547555 ConTIvn

645 17C(IRT.52.1) G D %25

GS¥ ) 557 ]‘I,J
8§55 20 56¢ J=1,t
867 M=(d=~1)="+ ]
665 567 C(M)=CY(],.)

STP IPz2%(NZ-1)¢MP+]

579 CALL w2l [< (3)AafL, 0,12 4Py
Sov 1Pzl P+ yw

6> CALL UwWalre

D) 1P,nP)
§3.00 COST CALTHLATI
7

\
§95 S70 TL(N YD (NEyze e TP
1% 00 Svr 121,V Fzi+}
5 35 552 J=11,7
TE TFCASCL Y Jha, 1wery o0 T 449
TEG 288z g1 RO 1Y (R (], 1) es™)
o TP 3G, D) .y S T gar
T2 ZLLT YOI, e (Fydl, D A N DD R SR DR Al @ BN D IS ARG I I R
3055 19 G&ﬂ
135 637 ZL_-)\(! J)*FY(I.‘)
T4v, G ZACE) 7 A(NE)+7 04
145 7L(“£):jL( V2L
157 DX, 1)z748a=-"LL
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755 IF (ERR.GE,DX(J,I)> GO TD §5P
760 ERR=DX(J,I): KE(NE)=IsLE(NE)=J
765 F(NE)=FY(I,J)
777 55p CONTINUE
775 IFC(I1.NE.1) GO TO 67r
78n PRINT,ERR,ZA* E) ,ZL(NE)
785 PRINT, "VALUr oF ERROR PERMITTED EP™
75¢ INPUT,EP
755 ZB:ZA(I)
gep S57¢ IF(ZACNE).GT.Z3)G0 TO 68°
885 Z2:z7A(NEY 1 N3:=NE 37C=73-EP
f14 PRINT 32,N3,23
215 62 IF(NE,EQ,I1) I1=]l+]
e PRINT 34,VE,ZA(NEY ,ZL(NE)
825 IF(NE,NELNF)Y GO TO 5+6¢
33¢ D2 T2a I=z1,11
235 IF (S(1),5Q.8) 30 T2 724
gae IF (ZL(I),GEZ,72C) S(1)=%
845 782 CONTINUE
85¢C CHECKING FGR TERMINATION
255 CHEC:=#r
gse DO T1e 1=z1,il
865 71¢ IF(5(1).EN.7) CHEC=CHEC+I
37¢ IF (CHEC.ER.11) GO T0 757
875 ZLI=ZL(D)
g8y, DO 728 1:=1,11
885 IF(53(IY.EQ.n) GO [0 72r¢
8o IF(ZLC(1),GT.ZLLY GO T 72¢
895 ZLI=zLC(1); NF=I
ore 722 CONTINUE
95 GO TO 47¢
9ie 75¢ PRINT,"LEAST COST JOLUTlov- ,78,"ERROR PERMITED:=" ,EP
915 PRINT,"NUM3ER OF cyaLyatTIon = v, ﬂUM
22 IP:Z*(VB-])*vP+NP+l
925 CALL UREAD (SJDATA,D,IP,NP)
93m PRIST,"FROM,®T ,T0,FLOW"
$35 20 195 "1,V
94F JzINTC((M=-1)/V)+!
945 [=¥, W (J-1)
958 755 CY(1,J)=C(")
Nigll

955 Do 788 1-1,

967 DO TRA J=11,V

965 IF(R(1,J).EQ.f) 50 TO 7182
97@ PRINT 2P, 1,J,R(1,J)

975 wyel

98¢ 768 LO:=CY(VY,J) 4
985 IF (LO,EQ.J) GO TO 7gn

356 PRINT 30, LO : NY=LO :
995 GO [0 768

ippe T8¢ CONTINUE
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iep5 STOP END

Inle SUBROUTINE SHORTEST

1615 COMMON DY DX,FY,R,CY,CXyN,NE X,L

1r2e REAL DY(35,35),Dx(35,395)

1£25 INTEGER N,NE,CY(35,35),CX(35,35) ,FY(35,35),R(35,35)
[e3e NlzN-1
In35 DO =59 1=
1242 DO 8586 4=
145 858 CY(1,Jd)=d

1656 DO 862 M={,N

1855 DO 362 I=i,NIglt=1+]
1868 IF(OYCI, W . EQ.1mE2) GO TO 8S§2

le65 DO 866 J=11,N

197¢ IF(DYCI,J) . LELC(OY(I,,M+DY(M,J3)) GC TO 35¢

1875 DY (1,J3=DYC1,M+DY(M,J)

legd DY(J,13:=0Y(1,d)

1885 CY(1,Jd)=CY(l,M); CY(J,I)=CY(J,")

198 26A CONTINUE

IS5 862 CONTINUE

1lre IF(NE.EQ.®) RETURN

11@5 DO 878 Iz ,NisilzI+]

1118 20 87¢ J=11,N

1115 276 FY(I1,J)=¢

1126 D0 S9¢ I=1,NIsIl=I+1

1125 D0 Se7 J=11,N

1132 IF(R(1,J).E2.8) GI TJ 9€&

1135 NX=R(I,d) ¢NY=1

114 88€ LO=Cy(NY,d)

1145 IF(NY,.GT,LO) GO TO 865

1158 FY(NY,LD3)=Y(NY,LC)+NX

1155 GO0 TJ 294

1160 885 FY(LO,NY)I=FY (LD, NY)I+NX

1165 899 1F(LO,EQ.,J) GO TO sre

1179 NY=LO

1175 GO TD 28¢

11ge 9rp CONTINUE

1185 RDTURN

11se END

1195 SUBROUTINE ARCHANGE

12mm COMMON DY, DX,FY,R,CY,CX,N,NE K,L

12,5 REAL DY(35,35),D%(35,35)

1218 INTEGER N,K,L,CY(35,35),CX(35,35),FY(35,35),R(35,35)
1215 Nl =N-]

12208 D0 9286 Izl ,Nls1lz]I+1

1225 DO 92¢ J=11,N

1238 AD=DY(I,K)+DX(K,L)+2Y(L,J)

1235 IF (DY(I,J).LE,AD) GO TO 91#n

1246 DX (I ,J)=ADsCX(1,J)=CYCI,K):CX(J,1)=CY(J,L)

1245 IFC(I.DQ.K) CX(I,J)=L

1258 IF(J.EQ.L) CX(J,I)=K

N
N

- “~“a w

- e
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1255
1268
1265
l2ie
1275

250

285
1292
1295
1380
13e5
1318
1315
1328
1325
1538
1335
1348
1345
1358
1355
1366
1365
137¢
1375
138e
1385
139¢
1395
rare
14e5

GO TO 22
916 AD=DY(I,L)+DX (K ,L)+DY(K,J)
IF(DY(1,J).LE.AD) GO TU SI5

DX(I,J):AD:CX(I,J):CY(I,L):CX(J,I):CY(J,K)

IF(I.EQ.L) CX(1,J)=K

IF(J.EQ.K) CX(J,I)=L

GO TO 328

915 CX(I1,J)=CYCI,d); Cx(d,1)=CY(d,I)e
9208 CONTINUE

00 932 I=1,N] sIi=1+]

00 938 J=I1,n

S3n FY(l,d)y=»

30 988 Iz1,N1 siizI+|

DO 98e J=1t,N
IF(R(1,J).EQ.®) GO TO 9935
NX=R(1,J)s NY=z1

S4C LO=CX(NY,J)
IF(N¥Y.GT,LO) GO TO 959
FYCNY L O)ZFY(NY,L0)+NX

GO TO o462

958 FYCLO,NY)=zY(LI,NY)NX
968 IF(LJ.EQ.I) GO T2 120
NY=LO

GO TI S47

988 DY(1,J)=9x(1,J)

D0 995 1:z1,¥

DO 925 J=1,¥
Cy(l,d>=Cx(1,d)>

925 IF (1.LT.J) DY ,1y:=DY(I,J)
RETURN

END

THE COMPUTATIONAL RESULT OF A NUMBER

IS LISTED INTHE TABLE OF NEXT PAGLE.

DX (1,J)=PY(I, )

OF PROBLENMS

el
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APPENDIX C

The solution procedures considered {or this problem always use
continuous functions and continuous variables. However, except for the
solution method, this assumption of continuity of the cost function is
not needed. The values of the cost function at integral points are
encugh data to get the total cost. If the requirements (rij) are
integers, then the following observation shows that all the extreme points
(one of which is found at each iteration of our procedures) of the convex

polyhedron are al<u integral.

The problem is:

M
Mininize 2Z = Z fm(ym) ,
m=1
. k .. . k
subject to x,, > r,, V (i j npairs) and x_, > G, where
ljzlj ij =

A X
all 1i,j3i>35 9 4

This is equivalent to:

=

Minimize 2(X) =
m

N~

m
f Z a..x..) ,
1 m<i,j;i>j 134

subject to DX > R, xtj > 0 , where a?j is the mth column of the
matrix Aij and D 1is a ( X Pij) x n matrix (n = the number of
i,j

source-sink pairs) with Pij 1's 1in each row and R = {rij) , an

n-vector. Now,
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1
is a totally unimodular matrix.
The theorem of Hoffman and Kruskal [Page 125, Ref. H-3] proves that
if the vector R 1is integral then all the extreme points of the

polyhedron defined by the constraints are integral.

1Definit(on: A matrix is said to be totally unimodular if and only {f
cvery subdeterminant of D (s cqual to +1 , -1 , or O,

j
i
1
i
|
1
i
j
i
I
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APPENDIX D

The property of concave nondecreasing functions established below is

used in Chapter 3.

Theorem:

Let £(y) be: (i) a concave function in y € [0,a] , (ii) f(y) >0

(i.e., it is bounded below) and (iii) nondecreasing in y , then

(a) f(y) is continuous (except perhaps at 0) . If it is not
nondecreasing, then it is not necessarily continuous at point
a .

(b) Both the left hand and the right hand derivatives D £ and
D+f exist at all points (except at 0 where D f 1is not
defined and D+f may not be finite; and at a where D+f is
not defined).

(c) The following inequalities are true:

(1) DEly)) 2D L(y,) V y, >y,

nv

, + +
(11) Df(y) 2D f(y,) V y, >y,

(111) DE(y) > D'r(y) YV y e (0,a)

Proof:

This proof has been done by Hardy, Polya and Littlewood [Page 91,

Ref. H-2) for any convex function defined in the open interval (H,K)

which is bounded above in some interval i interior to (H,K) .1 If

1The inequalities (1), (11) and (i11) are the reversc of the inequalities
in the thcorem of Hardy, Polya ard Littlewood because they are for convex
functions.
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f(y) 1s a concave function, -f(y) is convex. Condition (ii) guarantees
a lower bound for the concave function which is equivalent to the upper
bound of the convex function -f(y) . Here (H,K} = (0,a) . So, the
proof is exactly similar. Condition (iii) guarantees that at a there
cannot be a discontinuity because then the value of { would have to
decrease.

Thus, this theorem is valid for a piecewise linear concave function

{(a continuous version of the function as shown in Figure 1.5).
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